本文目录一览:

分数除法教案

作为一位优秀的人民教师,通常需要准备好一份教案,教案有助于学生理解并掌握系统的知识。那么优秀的教案是什么样的呢?以下是我为大家整理的分数除法教案5篇,仅供参考,大家一起来看看吧。

分数除法教案 篇1

单元教材分析: 本单元是在学生已经掌握了分数乘法的基础上,学习分数除法和比的初步知识。主要内容包括分数除法的意义和计算;解决问题;比的意义与基本性质,求比值一化简比,以及比的应用。通过本单元的学习,学生可以比较系统大掌握了分数的四则运算;另一方面又开始了比的初步知识的系统学习,为后面学习百分数和比例提供了基础。

单元教学目标:

1、理解并掌握分数除法的计算方法,回进行分数除法计算。

2、回解答已知一个数的几分之几是多少求这个数的实际问题。

3、理解不的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值

4、能运用比的知识解决有关的实际问题。

学情分析:

本单元学习之前,学生基本上完成了分数加、减以及分数乘法的学习。学生可以根据整数除法的意义理解分数除法的意义。

教学目标:

1、让学生理解分数除法的运算意义。

2、掌握分数除以整数的计算方法。

3、培养学生的计算能力和分析能力。

教学过程: 备注

活动一:

出示例1

每盒水果糖重100克,3盒有多重?

1、读题理解题意

2、列式100*3=300

3、把乘法算式改成两道除法算式

300/3=100300/100=3

4、用千克做单位怎样列式?

1/10*3=3/10

5、|用同样的方法改写成除法算

小结:分数除法的意义

活动二:

出示例2

把一张纸的4/5平均分成2份,每份是这张纸的几分之几?自己试着折一折,算一算

1、把4/5平均分成2份,就是把4个1/5平均分成2份,每份就是2个1/5,就是2/5

2、把4/5平均分成3份,每份就是4/5的1/2,也就是4/5*1/2

3、根据上面的折纸实验和算式,你发现什么规律?

小结:(略)

活动三:

巩固练习:

1、31页做一做1、2

板书设计

略去设计

分数除法教案 篇2

   教学目标

1.使学生理解两个整数相除的商可以用分数来表示.

2.明确分数与除法的关系,加深学生对分数意义的理解.

   教学重点

理解、归纳分数与除法的关系.

   教学难 点

用除法的意义理解分数的意义.

教学步骤

一、铺垫孕伏.

1.读题说得数.

3.2+1.680.8×0.514-7.40.3÷1.54.8×0.02

7.8+0.91.53-0.70.35÷150.4×0.80.8-0.37

2.口述表示的意义.

3.列式计算.

(1)把40棵树苗平均分给5个小组栽,每组栽多少棵?

(2)把8米长的钢管平均分成2段,每段长多少米?

二、探究新知.

1.新课导入.

出示例2:把1米长的钢管平均截成3段,每段长多少米?

板书:1÷3

教师提问:1÷3的结果能用准确的数表示出来吗?怎么办?学习了分数与除法的关系就明白了.(板书、分数与除法)

2.教学例2.

(1)从分数的意义上理解1÷3,即把1米长的钢管着成单位“1”,把单位“1”平均分成3份,表示这样一份的数,可用分数来表示,1米的就是米.(板书米)

(2)学生完整叙述自己想的过程.

(3)反馈练习.

①把1米长的钢管,平均分成8段,每段长多少?

②把1块饼平均分给5个同学,每个同学得到多少块?

3.教学例3.

出示例3:把3块饼平均分给4个孩子,每个孩子分得多少块?

(1)读题列式:3÷4

(2)动手操作:怎样把3块饼平均分给4个同学呢?

(3)学生交流.

甲生:先把每个圆剪成4个块,然后把12个平均分成4份,再把3个拼在一起,每份是块.

乙生:把3个圆放在一起,平均分成4份后,剪下其中的一份,再把1份中的3个拼在一起,得到每个分块.(在3÷4后板书块)

(4)看图根据乙生分饼的过程说出表示的意义.

①乙生把3块饼平均分成了4份,这样的一份是3块饼的,即

②甲生把1块饼平均分成了4份,表示这样的3份的数是.

(5)都是,意义有何不同?(结合算式说出的`两种意义)

明确:表示把3平均分成4份,取其中的1份;

还表示把单位“1”平均分成4份,取这样的3份.

(6)反馈练习:说说下面分数的两种意义

4.归纳分数与除法的关系.

(1)教师提问:怎样用分数来表示整数除法的商呢?

学生归纳:可以用分数表示整数除法的商,用除数做分母,用被除数作分子.也就是说分数既表示分数的意义,又表示整数除法的商.

(板书:)

教师明确:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数.

(2)讨论:用字母表示分数与除法的关系有什么要求?

(3)反馈练习.

三、全课小结.

通过今天的学习,你明白了什么?

   四、随堂练习.

1.填空.

分数可以用来表示除法算式的().其中分数的分子相当于(),分母相当于().

2.用分数表示下列各式的商.

4÷511÷1327÷35

9÷913÷1633÷29

3.列式计算.

(1)把5米长的绳子,平均分成12段,每段长多少米?

(2)把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?

(用分数表示)

(3)小明用15分钟走了1千米路,平均每分走几分之几千米?

   五、布置作业.

用分数表示下面各式的商.

3÷47÷1216÷4925÷249÷9

分数除法教案 篇3

设计说明

《数学课程标准》指出:学生是学习的主体,教师是组织者、引导者、合作者。因此,本节课以自主探究、小组合作的学习方式为主,采用情境教学法。先通过分月饼来导入新知,再通过实例验证,自己总结归纳出整数除以分数的计算方法,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、验证新知、应用新知、巩固和深化新知的目的。本节课的教学设计有如下特点:

1.注重对算理的探究。

探究算理是计算教学的根本。本节课的教学设计借助除法的意义和直观图形,让学生通过观察、比较与思考,发现整数除以整数(0除外)与整数除以分数知识间的内在联系,初步体会“除以一个不为零的数”与“乘这个数的倒数”之间的联系。这样不仅为学生创设了一个理解分数除法意义的机会,还教会了学生一种学习的方法,即分数除法的意义可以联系整数除法的意义进行学习。

2.突出自主探究的过程。

《数学课程标准》指出:自主探究、合作交流是数学学习的重要方式。本节课充分发挥学生的主体作用,先让学生独立思考,探究计算方法,再在独立探究的基础上,让学生小组合作讨论,探究不同的计算方法。这样不仅可以使学生经历独立探究、小组探究的过程,还可以使学生对“整数除以分数”的算理和算法的理解更深刻。

课前准备

教师准备 PPT课件

学生准备 圆形纸片

教学过程

第1课时 分数除法(二)(1)

⊙创设情境,导入新课

有4张饼,平均每人得到了2张;还是同样的4张饼,平均每人得到了1张。你能猜出两次分别是几个人分的饼吗?你是怎么想的?

设计意图:以猜一猜的形式导入新课,生动地呈现例题,激发了学生学习的兴趣。

⊙合作交流,探究新知

1.初步探究计算方法。

(1)课件出示教材57页上面例题。

(2)组织学生独立完成前两个小题,明确数量关系。

学生独立完成后汇报:

每2张一份,可分成几份?4÷2=2(份)

每1张一份,可分成几份?4÷1=4(份)

(3)组织学生讨论后,明确一个数除以分数的计算方法。

①引导学生动手操作,用圆形纸片代替饼,画一画,分一分,完成填空,并汇报自己的分法。

生1:我把每个圆都平均分成2份,一共可分成8份,可以用算式4÷=4×2=8(份)来表示。

生2:我把每个圆都平均分成3份,一共可分成12份,可以用算式4÷=4×3=12(份)来表示。

②观察算式,明确计算方法。

组织学生观察下面两个算式,交流自己的发现。

4÷=4×2=8 4÷=4×3=12

小结:一个数除以一个不为零的数,等于乘这个数的倒数。

设计意图:让学生充分利用学具,独立完成整数除法的计算,明确题中的数量关系;借助画一画、分一分的方法完成除法到乘法的转化。通过自主观察、小组讨论交流,真正理解一个数除以一个不为零的数,等于乘这个数的倒数的计算方法。

2.进一步巩固计算方法。

(1)出示教材57页中间例题的表格。

(2)引导学生观察表格前两行,讨论、交流表格中各项的意义和计算方法。

(3)组织学生填写表格。

(4)讨论:从表格“算式”一栏,你发现了什么?

(一个数除以一个不为零的数,等于乘这个数的倒数)

3.算一算,巩固计算方法。

(1)组织学生独立完成教材57页下面例题。

(2)汇报交流,说明计算时需要注意的事项。(能约分的要约分)

⊙巩固练习,提升反馈

完成教材58页3题,集体订正。

⊙课堂总结

通过本节课的学习,你有哪些收获?

⊙布置作业

教材58页1、2题。

板书设计

分数除法(二)(1)

4÷=8 4÷=12

分数除法教案 篇4

教学目标:

4、学习运用线段图帮助分析数量关系。

5、加强列方程的思维训练。

6、培养学生分析问题解决问题的能力。

教学过程:备注

活动一:复习与准备

1、根据题意列出方程。

(1)、六年一班有15人参加了合唱队,占全班人数的1/3,六年一班有多少人?

(2)、美术小组的人数比航模小组多1/4。美术小组的人数比航模小组多5人。航模小组有多少人?

活动二:出示例2

一、

1、审题。

2、看例题的插图,理解题目的意思,说说知道了什么,要求什么

3、分析题意,说说你对美术小组的人数比航模组多1/4这一条件的理解。

4、理解数量关系

二、

1、分析、解答

2、说说数量关系。

3、学生根据得到的数量关系列方程解答。

4、交流各自的解法。

小结:关键是搞清哪两个量比较,谁多谁少,多或少了谁的几分之几。

活动三:

巩固联系:

1、41页7、8题

2、41页10题

板书设计

分数除法教案 篇5

教学目标

1.使学生掌握列方程解答“已知一个数的几分之几是多少,求这个数”的应用题的解答方法

2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.

教学重点

找准单位“1”,找出等量联系.

教学难点

能正确的分析数量联系并列方程解答应用题.

教学过程

一、复习、引新

(一)确定单位“1”

1.铅笔的支数是钢笔的 倍.

2.杨树的棵数是柳树的 .

3.白兔只数的 是黑兔.

4.红花朵数的 相当于黄花.

(二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?

1.找出题目中的已知条件和未知条件.

2.分析题意并列式解答.

二、讲授新课

(一)将复习题改成例1

例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的耕地面积是多少公顷?

1.找出已知条件和问题

2.抓住哪句话来分析?

3.引导学生用线段图来表示题目中的数量联系.

4.比较复习题与例1的相同点与不同点.

5.教师提问:

(1)棉田面积占全村耕地面积的 ,谁是单位“1”?

(2)如果要求全村耕地面积的 是多少,应该怎样列式?(全村耕地面积× ).

(3)全村耕地面积的 就是谁的面积?(就是棉田的面积)

解:设全村耕地面积是 公顷.

答:全村耕地面积是75公顷.

6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?

(1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)

(公顷)

(根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)

(二)练习

果园里有桃树560棵,占果树总数的 .果园里一共有果树多少棵?

1.找出已知条件和问题

2.画图并分析数量联系

3.列式解答

解1:设一共有果树 棵.

答:一共有果树640棵.

解1: (棵)

(三)教学例2

例2.一条裤子75元,是一件上衣价格的 .一件上衣多少钱?

1.教师提问

(1)题中的已知条件和问题有什么?

(2)有几个量相比较,应把哪个数量作为单位“1”?

2.引导学生说出线段图应怎样画?上衣价格的

3.分析:上衣价格的 就是谁的价钱?(是裤子的价钱)谁能找出数量间相等的联系?(上衣的单价× =裤子的单价)

4.让学生独立用列方程的方法解答,并加强个别辅导.

解:设一件上衣 元.

答:一件上衣 元.

5.怎样直接用算术方法求出上衣的单价?

(元)

6.比较一下算术解法和方程解法的相同之处与不同之处.

相同点:都要根据数量间相等的联系式来列式.

不同点:算术解法是按照分数除法的意义直接列出除法算式;而方程解法则要先设未知数,再按照等量联系式列出方程.

三、巩固练习

(一)一个修路队修一条路,第一天修了全长 ,正好是160米,这条路全长是多少米?

提问:谁是单位“1”?数量间相等的联系式是什么?怎样列式?

(米)

(二)幼儿园买来 千克水果糖,是买来的牛奶糖的 ,买来牛奶糖多少千克?

(三)新风小学去年植树320棵,相当于今年植树棵数的 .今年、去年共植树多少棵?

1.演示:分数除法应用题

2.列式解答

四、课堂小结

这节课我们学习了列方程解答分数除法应用题的方法.这类题有什么特点?解题时分几步?

五、课后作业

(一)一桶水,用去它的 ,正好是15千克.这桶水重多少千克?

(二)王新买了一本书和一枝钢笔.书的价格是4元,正好是钢笔价格的 .钢笔价格是多少元?

(三)一种小汽车的最快速度是每小时行140千米,相当于一种超音速飞机速度的 .这种超音速飞机每小时飞行多少千米?

小学六年级数学总复习资料

《小学1-6年级数学学霸笔记(含资料汇编)》百度网盘资源免费下载

链接:

提取码:1fxs

小学1-6年级数学学霸笔记(含资料汇编)|人教版小学各年级数学知识点归纳|【2】小学数学期中考试试卷合集(各年级上册)|【1】小学1-6年级数学知识点归纳|【数学】一年级十大趣味数学2.pdf|【数学】一年级十大趣味数学.pdf|【数学】学而思网校内部奥数习题集.中年级.docx|【数学】学而思网校内部奥数习题集.高年级.doc|【数学】学而思网校内部奥数习题集.低年级.docx|【数学】小升初总复习数学归类讲解及训练中(含答案).doc|【数学】第十八届华杯赛初赛试卷_小学中年级组解析.pdf|【数学】第十八届华杯赛初赛试卷_小学中年级组.pdf|【数学】第十八届华杯赛初赛试卷_小学高年级组解析.pdf|【数学】第十八届华杯赛初赛试卷_小学高年级组.pdf|苏教版数学上册期末试卷  

小学六年级上册数学比的基本性质教案

在课前,做好数学教案是实施课堂教学的基本指导材料。为此,下面我整理了人教版小学六年级上册数学比的基本性质教案内容以供大家阅读。

人教版小学六年级上册数学比的基本性质教案

教学内容:人教版小学数学教材六年级上册第50~51页内容及相关练习。

教学目标:

1.理解和掌握比的基本性质,并能应用比的基本性质化简比,初步掌握化简比的 方法 。

2.在自主探索的过程中,沟通比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。

3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。

教学重点:理解比的基本性质

教学难点:正确应用比的基本性质化简比

教学准备:课件,答题纸,实物投影。

教学过程:

一、 复习引入

1.师:同学们先来回忆一下,关于比已经学习了什么知识?

预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。

2.你能直接说出700÷25的商吗?

(1)你是怎么想的?

(2)依据是什么?

3.你还记得分数的基本性质吗?举例说明。

【设计意图】影响学生学习的一个重要因素就是学生已经知道了什么,于是此环节意在通过复习、回忆让学生沟通比、除法和分数之间的关系,重现商不变性质和分数的基本性质,为类比推出比的基本性质埋下伏笔。同时,还有机渗透了转化的数学思想,使学生感受知识之间存在着紧密的内在联系。

二、新知探究

(一)猜想比的基本性质

1.师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变性质,分数有分数的基本性质,联想这两个性质,想一想:在比中又会有怎样的规律或性质?

预设:比的基本性质。

2.学生纷纷猜想比的基本性质。

预设:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

3.根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

【设计意图】比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。

(二)验证比的基本性质

师:正如大家想的,比和除法、分数一样,也具有属于它自己的规律性质,那么是否和大家猜想的“比的前项和后项同时乘或除以相同的数(0除外),比值不变”一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。

1.教师说明合作要求。

(1)独立完成:写出一个比,并用自己喜欢的方法进行验证。

(2)小组讨论学习。

①每个同学分别向组内同学展示自己的研究成果,并依次交流(其他同学表明是否赞同此同学的结论)。

②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。

③选派一个同学代表小组进行发言。

2.集体交流(要求小组发言代表结合具体的例子在展台上进行讲解)。

预设:根据比与除法、分数的关系进行验证;根据比值验证。

3.全班验证。

;

;

16:20=(16○□):(20○□)。

4.完善归纳,概括出比的基本性质。

上题中○内可以怎样填?□内可以填任意数吗?为什么?

(1)学生发表自己的见解并说明理由,教师完善板书。

(2)学生打开书本读一读比的基本性质,教师板书课题。(比的基本性质)

5.质疑辨析,深化认识。

利用比的基本性质做出准确判断:

(1) ( )

(2) ( )

(3) ( )

(4)比的前项乘3,要使比值不变,比的后项应除以3。 ( )

【设计意图】基于猜想的学习必定需要来自学生的自主探究进行验证,而合作探究又是一种良好的学习方式,但合作学习不能流于形式。合作学习首先要让学生独立思考,让学生产生自己的想法,然后再进行合作交流,这样可以促使每个学生经历自主探究的学习过程,交流过程中不仅培养了学生的推理概括能力,同时也真正内化了来自猜想的“比的基本性质”,从而大大提高了合作学习的实效性。

三、比的基本性质的应用

师:同学们,你们还记得我们学习分数的基本性质的用途吗?什么是最简分数?

今天我们发现的比的基本性质也有一个非常重要的用途──可以化简比,进而得到一个最简整数比。

(一)理解最简整数比的含义。

1.引导学生自学最简整数比的相关知识。

预设:前项、后项互质的整数比称为最简整数比。

2.从下列各比中找出最简整数比,并简述理由。

3:4; 18:12; 19:10; ; 0.75:2。

(二)初步应用。

1.化简前项、后项都是整数的比。(课件出示教材第50页例1)

学生独立尝试,化简后交流。

(1)15:10=(15÷5):(10÷5)=3:2;

(2)180:120=(180÷□):(120÷□)=( ):( )。

预设:除以最大公因数和逐步除以公因数两种方法,但重点强调除以最大公因数的方法。

2.化简前项、后项出现分数、小数的比。(课件出示)

师:对于前项、后项是整数的比,我们只要除以它们的最大公因数就可以了,但是像 : 和0.75:2,

这两个比不是最简整数比,你们能自己找到化简的方法吗?四人小组讨论研究,找到化简的方法。

学生研究写出具体过程, 总结 方法,并选代表展示汇报。教师对不同方法进行比较,引导学生掌握一般方法。

预设:含有分数和小数的比都要先化成整数比,再进行化简。有分数的先乘分母的最小公倍数;有小数的先把小数化成整数之后,再进行化简。

3.归纳小结:同学们通过自己的努力探索,总结出了将各类比化为最简整数比的方法。化简时,如果比的前项和后项都是整数,可以同时除以它们的最大公因数;遇到小数时先转化成整数,再进行化简;遇到分数时,可以同时乘分母的最小公倍数。

4.方法补充,区分化简比和求比值。

还可以用什么方法化简比?(求比值)

化简比和求比值有什么不同?

预设:化简比的最后结果是一个比,求比值的最后结果是一个数。

5.尝试练习。

把下面各比化成最简单的整数比(出示教材第51页“做一做”)。

32:16; 48:40; 0.15:0.3;

; ; 。

【设计意图】新课程标准提出教学中应该充分体现“以学生发展为本”的教学理念,充分发挥学生的主体作用,使学生成为学习的主人。因此在运用比的基本性质化简比的教学过程中,通过自学、独立探究、小组合作等方式,为学生创造一个积极的数学活动的机会,鼓励学生自主探究,找到化简比的方法。

四、巩固练习

(一)基础练习

1.教材第53页第4题。

把下列各比化成后项是100的比。

(1)学校 种植 树苗,成活的棵数与种植总棵数的比是49:50。

(2)要配制一种药水,药剂的质量与药水总质量的比是0.12:1。

(3)某企业去年实际产值与计划产值的比是275万:250万。

2.教材第53页第6题。

(二)拓展练习(PPT课件出示)

学生口答完成。

1.2:3这个比中,前项增加12,要使比值不变,后项应该增加( )。

2.六(1)班男生人数是女生人数的1.2倍,男生、女生人数的比是( ),男生和全班人数的比是( ),女生和全班人数的比是( )

【设计意图】练习的设计要紧紧围绕教学的重难点,同时练习的编排应体现从易到难的层次性。第1题是针对比的基本性质的基础练习,同时也为后续百分数的学习埋下伏笔。第2题训练单位不同的两个数量的比的化简方法,培养学生的审题能力。拓展练习不仅发展学生思维的灵活性、培养学生的创造能力,而且很好地巩固了本节课的知识,同时这类题型也是分数应用题、比例应用题的基础训练,也为以后分数应用题和比例应用题的学习打下扎实的基础。

五、课堂小结

这节课你有什么收获?还有什么疑问?

课后 反思 :

《按比分配解决问题》教学设计

教学内容:人教版小学数学教材六年级上册第54页例2及相关练习。

教学目标:

1.能在实例的分析中理解按比分配的实际意义。

2.初步掌握按比分配的解题方法,运用所学知识解决按比分配的实际问题。

3.通过贴近学生生活的实例学习,在观察、研讨、交流中让学生感受到数学学习和活动的乐趣。

教学重点:理解按比分配的意义,能运用比的意义解决按比分配的实际问题。

教学难点:自主探索解决按比分配实际问题的策略,能运用不同的方法多角度解决按比分配的实际问题。

教学准备:课件。

教学过程:

一、情境导入

课件出示:女生与男生的人数比是5:7。

师:“女生和男生的人数比是5:7”,从这句话中,你得到了哪些信息?

【设计意图】一条简单的现实生活信息,不但使学生体会到数学与生活的联系,激发了学生的学习兴趣,而且培养了学生分析问题、解决问题的能力。

二、实例探究

(一)自主探索

1.出示:六(2)班一共有48人,女生与男生的人数比是5:7。

师:根据这两条信息,你能求出什么?男生、女生各有多少人呢?你会算吗?

2.学生独立尝试。

3.同桌交流。

师:与同桌交流一下你的想法和做法,有不同的方法都可以写下来。(教师巡视指导)

4.汇报:

请不同做法的学生上台板演,交流汇报。

预设(1):48÷(5+7)=4(人);

女生:4×5=20(人);

男生:4×7=28(人)。

师:介绍一下你的想法吧。第一步求的是什么?第二步和第三步分别是什么意思?这种方法是先求什么?再算什么?

师:还有不同的解决方法吗?

预设(2):女生: (人);

男生: (人)。

师:这种方法中, 是什么意思? 呢?

5.小结:刚才同学们用不同的方法解决了同一个问题,我们再一起来看看(配合课件演示)。

方法一是根据比的意义,看看一共分成几份,先求出一份的数量,再算几份的数量;方法二是根据比与分数的关系,看看男生、女生各占总人数的几分之几,再用分数的知识来解决。这两种方法都不失为好方法,你更喜欢哪种方法?为什么?

【设计意图】在引导学生探究时,没有直接用书本上的例题,而是用了班级男生、女生人数比这一实际情况。因为是学生非常熟悉的事例,所以学生很乐意去探索、交流、实践。这样的设计不仅降低了学习的难度,而且激发了学生的学习兴趣。

(二)揭示课题

师:像上题这样,把数量按一定的比来进行分配的方法叫做按比分配。今天我们就一起学习按比分配。(板书课题:按比分配)

(三)实践尝试

出示例2:这是某种清洁剂浓缩液的稀释瓶,瓶子上标明的比表示浓缩液和水的体积之比。按照这些比,可以配制出不同浓度的稀释液。

1.阅读与理解。

浓缩液和稀释液指的是什么?(浓缩液是纯清洁剂,稀释液是加水之后的清洁剂。)

师:你能用刚才的方法解决这一问题吗?(学生独立解题,交流汇报。)

2.分析与解答。

预设(1):每份是500÷5=100(mL),浓缩液有100×1=100(mL),水有100×4=400(mL)。

师:这里的5表示什么?(把总体积平均分成5份。)

预设(2):浓缩液有 (mL),水有 (mL)。

师: 表示什么?(浓缩液占总体积的 ;)

呢?(水占总体积的 。)

3.回顾与反思。

师:可以用怎样的方法对结果进行验证?

预设:看浓缩液与水的比是不是等于1:4。

小结:体现在问题解决的过程中,要看清楚1:4到底是哪两个量之间的比。

【设计意图】把书上的例2作为尝试题,让学生独立尝试、交流,最后进行小结。这样不但培养了学生独立审题、分析的能力,而且进一步加深对两种方法的理解,让学生初尝成功的乐趣。

三、实践应用

(一)基本练习

1.师:打开教材第55页,看第一题。

(1)师:用自己喜欢的方法独立算一算,看谁算得又快又对。

(2)交流: 说说 你的方法。

2.出示:李伯伯家里的菜地共800平方米,他准备种黄瓜和茄子。

师:请你来设计一下,可以怎么分配?

预设一:1:1。

师:如果按1:1分配,那么种黄瓜和茄子的面积分别是多少平方米?(学生自主计算)

师:通过计算,发现按1:1分配其实就是我们以前学过的“平均分”。是的,平均分就是按1:1分配,是按比分配中的特例。

对于其余各种分配方法,都让学生快速算一算再交流。

(二)发展提高

1.师:增加点难度行不行?我把这一题变一下。

出示教材第56页第7题:李伯伯家里的菜地共800平方米,他准备用 种西红柿,剩下的按2:1的面积比种黄瓜和茄子。三种蔬菜的面积分别是多少平方米?

(1)比较:这一题和前几题相比,有什么不同?

(2)分析:这一题是把哪个数量进行分配,按怎样的比来分配?这个数量直接告诉我们了吗?所以我们应该先算什么?那你会算吗?

(3)学生尝试。

(4)交流算法。

师:你是怎么算的?(展示学生作业)还有同学用其他方法做吗?介绍一下你们的方法。

师:这几位同学的方法有什么共同点?有什么不同点?

2.出示:学校把栽70棵树的任务按照六年级三个班的人数分配给各班。一班有46人,二班有44人,三班有50人。三个班各应栽多少棵树?

(1)比较分析:

师:这一题又有什么不一样?没有直接给出“比”,不能直接按比分配了,那怎么办?

师:我们可以先求出比,再按比进行分配。

(2)学生独立尝试,交流算法。

(三)小结

师:通过上面两个问题的解答,你觉得在解答按比分配的问题时应注意什么?

师:说得对,在解答这类问题时,我们要认真审题,看清楚是对哪个数量进行分配,是按什么比分配的;如果题目没有直接给出比,我们要先根据题目信息求出比,再按比分配。

【设计意图】创设问题情境,从基本练习到综合性较强的问题,再到没有直接给出比的题目,层层深入,让学生在解决实际问题的过程中感受学习的乐趣和价值,不仅培养了学生独立解题的能力,而且还可以让学生在实践的探索中验证、品尝自己的学习成果,再次感受成功带来的乐趣。

四、课堂总结

1.师:学到这里,谁能告诉我们,今天这节课我们主要研究了什么?说说你的收获和感受。(指名回答)

2.课外延伸。

师:比在生活中应用非常广泛,请你课后搜集生活中的实例,编一道按比分配的题目,在下一节课中进行交流学习。

【设计意图】让学生自己抓住“收获”、“感受”来进行课堂总结,可以再次让学生对所学知识进行梳理,培养评价、反思的能力,让学生更加深切地感受到数学的魅力。

小学数学知识点 顺口溜

一、20以内进位加法

看大数,分小数,凑整十,加零头。

(掌握“凑十法”,提倡“递推法”。)

二、20以内退位减法

20以内退位减,口算方法和简单。

十位退一,个加补,又准又快写得数。

三、加法意义,竖式计算

两数合并用加法,加的结果叫做和。

数位对其从右起,逢十进一别忘记。

四、减法的意义竖式计算

从大去小用减法,减的结果叫做差。

数位对齐从右起,不够减时前位拿。

五、两位数乘法

两位数乘法并不难,计算过程有三点:

乘数个位要先算,再用十位乘一遍,

乘积末位是关键,要和十位来对端;

两次乘积相加完,层层计算记心间

六、两位数除法

除数两位看两位,两位不够除三位。

除到那位商那位,余数要比除数小,

然后再除下一位,试商方法要灵活,

掌握“四舍五入”法,还有“同商比较法”,

了解“折半定商法”,不足除数商九、八。(包括:同头、高位少1)

七、混合运算

拿到式题认真看,先算乘除后加碱。

遇到括号要先算,运用规律要改变。

一些数据要记牢,技能技巧掌握好。

八、加、减法速算

加减法速算你莫愁,拿到算式看清楚,

接近整百凑整数,如下处理无谬误。

加法不足减补数,超余零头加在后。

减法不足加补数,超余零头减在后。

九、多位数读法

读书方法很容易,首先四位一分级。

要从最高位读起,几千几百几十几。

级的单位读亿万,末尾有零都不读

(级末尾0不读,整个数末尾0不读)

中间夹零读一个,汉字表达没参和。

注读零的:

1、万级个级首位有零

2、整个万级是零

3、上级末尾下级首位都有0

4、每级中间有0

十、小数加减法

小数加减计算题,以点对准好对齐。

算法如同算整数,算毕把点往下移。

十一、小数乘法

小数乘小数,法则同整数。

定积小数位,因数共同凑。

十二、除数是小数的除法

除数的小数点一划,(去掉小数点)

被除数的小数点搬家,向右搬家搬几位,

除数的小数位数决定它。

十三、质数歌

一位质数2、3、5和7,

两位1、3、7、9前加1,

4后3,7前有9,7后1,

3、4、6后加7、1,

2、5、7、8后添9、3,

二十五个质数要记全。

十四、分数乘除法

分数乘法易学懂,分子分母分别乘。算式意义要搞清,上下能约更轻松。分数除法方法妙,原来除号变乘号。除数子母打颠倒,进行计算离不了。

十五、约分

约分、约分,相乘约净,省时省力。从上往下,从左到右,弄清数据,一数不漏。遇到小数,去点为整,位数不够,用“零”来补。

小学数学知识点顺口溜的实际运用

“求比一个数多几的数”的应用题

六年制数学课本第四册中“求比一个数多几的数”与“求比一个数少几的数”两种应用题,是大小两数进行比较,可以得到一个差。已知差与两数中的一个数,求另一个数,这就是求比一个数多几或少几的数。所以“比……多“与“比……少“两种应用题,都是求两个数相差的逆推题,题目结构相同。已知条件得”多几“与”少几“应用题,只是一个问题的两个侧面而已。学生解这类题最容易犯的错误,是见”多’ 就用加法算,见“少”就用减法算,凭个别字眼判定算法。

教学思路是:

1、分析数量关系,教给学生思考问题的方法。

2、充分发挥线段图的作用,使应用题的“事”转化为“理”,又由 “理”转化为“式”直观地表达出来,然后找出规律。

例:P17例5 光明小学种树,种了300棵柳树,种的杨树比柳树多70棵,种杨树多少棵?

一、 提问:有哪几种树? (柳树,杨树)

谁与谁比?(杨树与柳树比)

谁多?(杨树多) 谁少?(柳树少)

二、计算的关系式:柳树棵数+杨树比柳树多的棵数=杨树的棵数

三、算式表示:300+70=370(棵)

四、如果把第一个条件改为问题,问题改为条件,应该怎样算。

五、然后得出关键句:已知条件说比多(要求数在比前)比前用加,(要求数在比后)比后减。

猜你喜欢:

1. 六年级上册数学《比例》教案

2. 六年级上册数学《比例尺》教案

3. 六年级上册数学常见的量教案

4. 六年级上册数学《图形的放缩》教案

5. 六年级上册数学百分数的应用教案

6. 六年级上册数学《因数与倍数》教案

小学数学(北师大版)1至6年级概念

小学总复习概念公式要点

1.像…-3 ,-2,-1,0,1,2,3,…这样的数称为整数。在整数中大于0的数称为正整数,小于0的数称为负整数。正整数、0、负整数统称为整数。

2.读法:从高位到低位,一级一级地读,每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

3.写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0.

4.我们在数物体的时候,用来表示物体个数的0,1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。0是最小的自然数,没有最大的自然数,自然数的个数是无限的。

5.任何非0自然数都是由若干个“1”组成,所以自然数的基本单位是“1”.

6.计数单位

一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

7.数位

计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

8. 大小比较

①比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。

②比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……

③比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。

9.数的改写

一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。例如把 1254300000 改写成以万做单位的数是 125430 万;改写成以亿做单位的数 12.543 亿。

近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。例如: 1302490015 省略亿后面的尾数是 13 亿。

四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。

10.整除

①整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

②如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的约数。

③一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。

④一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。

⑤一个数的最大公因数和最小公倍数都是它本身。

11.最大公因数.

①几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。

②公约数只有1的两个数,叫做互质数,成互质关系的两个数。

有下列几种情况:

1和任何自然数互质。

相邻的两个自然数互质。

两个不同的质数互质。

当合数不是质数的倍数时,这个合数和这个质数互质。

两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。

如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。

如果两个数是互质数,它们的最大公约数就是1。

12.公倍数

几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数

如2的倍数有2、4、6 、8、10、12、14、16、18 ……

3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们最小公倍数。。

如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。

13. 2,3,5倍数的特征

①个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。

②个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。

③一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

④一个数各位数上的和能被9整除,这个数就能被9整除。

能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

⑤一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。

14.数的奇偶性

能被2整除的数叫做偶数。 不能被2整除的数叫做奇数。

0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。

15.质数和合数

① 一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),

100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

②一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

③1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。

每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。

④把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

例如把28分解质因数28=2×2×7

16.0既不是正数也不是负数;负数大小比较:数字越大的负数反而越小。

17.小数的意义

①把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

②一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。

在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

③小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。

④小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字

18.小数的分类

纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。

带小数:整数部分不是零的小数,叫做带小数。例如: 3.25 、 5.26 都是带小数。

有限小数:小数部分的数位是有限的小数,叫做有限小数。例如: 41.7 、 25.3 、 0.23 都是有限小数。

无限小数:小数部分的数位是无限的小数,叫做无限小数。例如: 4.33 …… 3.1415926……

无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。例如:∏

循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如: 3.555 …… 0.0333 …… 12.109109 ……

一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54 ” 。

纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。例如: 3.111 …… 0.5656 ……

混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 …… 0.03333 ……

写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环节只有一个数字,就只在它的上面点一个点。例如: 3.777 …… 简写作 0.5302302 …… 简写作 。

19.分数的意义

①把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

②把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

③分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。

④分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。

20.除法与分数、比的关系:

分子相当于除法中的被除数、相当于比的前项;分母相当于除法中除数、相当于比的后项;分数线相当于除号、相当于比号;除数,分母相当于除数,分数线相当于除号,也就是被除数÷除数=被除数:除数=( )。

除法中除数不能为0,所以分数的分母也不能为0;除法是一种运算,分数是一个数。

21分数的分类

真分数:分子比分母小的分数叫做真分数。真分数小于1。

假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。

带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

22. 约分和通分

把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。

分子分母是互质数的分数,叫做最简分数。

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

23.百分数

表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。

百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。

百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。

24. ①小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

② 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。

③小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。

④百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

⑤分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

⑥百分数化成分数:先把百分数改写成分数,能约分的要约成最简分数。

25.小数的基本性质:小数的末尾添上0或者去掉0,小数的大小不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外)分数的大小不变。

商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变,这叫做商不变的性质。

26.分数与百分数的区别:分数既可以表示一个数,也可以两个数的比;而百分数只表示一个数占另一个数的百分比,不能表示具体的数量,所以百分数不能有单位。

27.比

比的意义:两个数相除又叫作两个数的比。

根据比的意义可以求比值;求比值的方法:用前向除以后项。

比的基本性质:比的前项和后项都乘或除以相同的数(0除外)比值不变。应用比的基本性质可以化简比。

28.人民币

人民币的单位:元,角,分。

进率:相邻的两个单位间的进率是10,1元=10角,1角=10分。

29.24时计时法

为了计算简便,不容易出错,采用从0时到24时的计时法,通常叫做24时计时法。

30.时间单位:世纪、年、季度、月、日、时、分、秒。

进率:1世纪=100年;一年=365天(平年)或366天(闰年);一年=12个月;一年=4个季度;1季度=3个月;1日=24时;1时=60分;1分=60秒。

大月有:一月、三月、五月、七月、八月、十月、十二月,各月31天。

小月有:四月、六月、九月、十一月,各月30天。

二月:平年二月28天,闰年二月29天。

31.确定闰年的方法:公历纪年法中,是4的倍数的大多是闰年;公历年份是整百年的,必须是400的倍数才是闰年。如:1600年是闰年,1700年是平年。

32.常用质量单位有:克、千克、吨。

进率:相邻的两个质量单位间的进率是1000,即1吨=1000千克,1千克=1000克。

33.名数的改写:高级单位换算成低级单位就乘进率;低级单位换算成高级单位就除以进率。

(大化小乘以进率,小化大除以进率)

34.四则运算的意义

①整数、小数、分数加法的意义:把两个数合并成一个数的运算。

②整数、小数、分数减法的意义:已知两个数的和与其中一个加数,求另一个加数的运算。

③整数乘法的意义:求几个相同加数和的简便运算。

④小数乘法的意义:小数乘整数和整数乘法的意义相同;一个数乘小数,就是求这个数的十分之几、百分之几、……是多少。

⑤分数乘法的意义:分数乘整数和整数乘法的意义相同;一个数乘分数,就是求这个数的几分之几是多少。

⑥整数、小数、分数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。

35.计算法则

①整数乘法的计算法则:(略)。

②小数乘法的计算法则:先按整数乘法的计算法则算出积,再看两个因数中共有几位小数,就从积的右边起向左边数出几位,点上小数点。如果小数的位数不够,就要在前面用“0”补足。

③分数乘法的计算法则:分子相乘的积做分子,分母相乘的积做分母,(能约分的要先约分再计算)

④整数除法的计算法则:(略)。

⑤小数除法的计算法则:除数是整数时,按整数除法的计算法则计算,商的小数点要和被除数的小数点对齐。除数是小数时,先移动除数的小数点,把除数变成整数,除数的小数点向右移动几位,被除数的小数点也要向右移动几位,(位数不够时末尾用“0”补足),然后按照除数是整数的小数除法法则进行计算。

⑥分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

36.四则运算的互逆关系

减法是加法的逆运算,除法是乘法的逆运算。

①加数+加数=和

和-一个加数=另一个加数

②被减数-减数=差

被减数-差=减数

差+减数=被减数

③因数×因数=积

积÷一个因数=另一个因数

④被除数÷除数=商

被除数÷商=除数

商×除数=被除数

除数×商+余数=被除数

37.估算的方法

①四舍五入法:要保留到哪一位,就看它的后一位,如果后一位上的数是4或者小于4,就把它舍去;如果后一位上的数是5或者大于5,也要把它舍去,但要同时向它的左边的单位进1,这种方法叫做四舍五入法。

②进一法:在取数的近似值时,把它舍去的部分去掉后,在保留部分的末尾上加1,这种取近似数的方法叫作进一法。

③去尾法: 在取数的近似值时,把它舍去的部分去掉后,所保留的数不变,这种取近似数的方法叫作去尾法。

38.四则混合运算

①在四则运算中,加法和减法称为第一级运算,乘法和除法称为第二级运算。

②在没有括号的算式里,如果只含有同一级运算,要从左往右一次计算;如果含有两级运算,要先做第二级运算,再做第一级运算。

③在有括号的算式里,要先算括号里面的,如果既有小括号又有中括号,要先算小括号里面的,再算中括号里面的,最后算括号外面的。

39.分数、百分数应用题

单位“1”已知,用乘法。单位“1”未知,用除法。

①求一个数是另一个数的几(百)分之几?

基本公式:前一个数÷后一个数 (比较量÷标准量)

②求一个数的几(百)分之几或几倍是多少?(单位“1”已知)

基本公式:单位“1”的量×分率=分率对应的量

③已知一个数的几(百)分之几是多少,求这个数.(单位“1”未知用除法或方程)

基本公式:分率对应的数量÷分率=单位“1”的量 或者列方程解。

④已知两个数,求一个数比另一个数多几分之几。

已知两个数,求一个数比另一个数多百分之几。

已知两个数,求一个数比另一个数少几分之几。

已知两个数,求一个数比另一个数少百分之几。

基本公式:两个数的差÷单位“1”的量(标准量)

40.存款

①本金:存入银行的钱叫本金。利息:取款时银行多支付的钱叫利息。利率:利息与本金的百分比叫做利率。

②利息计算公式:利息=本金×时间×利率

利息税=本金×时间×利率×5%

41.四则运算定律

加法交换律:a+b=b+a,

加法结合律:(a+b)+c=a+(b+c)

乘法交换律:ab=ba,

乘法结合律:(ab)c=a(bc)

乘法分配律:(a±b)c=ac±bc

42.运算性质

①减法的基本性质:a-(b+c)=a-b-c

a-b-c=a-(b+c)

②除法的基本性质:a÷b÷c=a÷(b×c)

(a±b)÷c=a÷c±b÷c

太多了,自己去看吧,网址:

比的基本性质和化简比ppt

比的性质:比的前项和后项同时除以相同的数,0除外0,比值不变,这一规律叫做比的性质。

比的意义:两个数相除又叫两个数的比":"是比号,比号前面的数叫比的前项,后面的数脚比的后项,比的前项除以比的后项所得的商,叫做比值,比值通常用分数表示,也可以用小数或整数表示。

比与分数除法之间的关系:比的前项相当于除法中的被除数,又相当于分数中的分子,比号相当于除号又相当于分数线,比的后项相当于除数,又相当于分数中的分母,比中间的比值相当于除法中的商,又相当于分数中的分数值。(比的后项不能为0)

扩展资料:

比是由一个前项和一个后项组成的除法算式,只不过把“÷”(除号)改成了“:”(比号)而已,但除法算式表示的是一种运算,而比则表示两个数的关系。和分数的分数线类似。

举一个例子,比如6÷4用比的形式写作6:4。“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。而本例中6是这个比的前项,4是这个比的后项。

比跟除法、分数比较,比的前项相当于被除数、分子,比的后项相当于除数、分母,比值相当于商、分数值,比号相当于除号、分数线。比值相当于商和分数值。

因为除数和分母不能为“0”,所以比的后项不能为“0”。如果用字母表示比、除法、分数三者之间的关系,可以表示为a:b=a÷b=a/b(b≠0)。