本文目录一览:
分数的基本性质教案
作为一名优秀的教育工作者,通常会被要求编写教案,教案是备课向课堂教学转化的关节点。那么问题来了,教案应该怎么写?以下是我帮大家整理的分数的基本性质教案4篇,供大家参考借鉴,希望可以帮助到有需要的朋友。
分数的基本性质教案 篇1
教学目的:
1、理解分数的基本性质;
2、初步掌握分数性质的应用;
3、培养学生观察——探索——抽象——概括的能力;
4、渗透事物是相互联系、发展变化的辩证唯物主义观点。
教学重点:
从相等的分数中看出变与不变,观察、发现、概括其中的规律。
教学难点:
形成对分数的基本性质的统一认知。
教学准备: 多媒体,自制演示教具。
教学过程:
一、激趣引新:
1、有位老爷爷把一块地分给三个儿子。老大分到了这块地的1/3,老二分到这块地的2/6,老三分到这块地的3/9。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑起来,给他们讲了几句话,三兄弟就停止了争吵。你知道阿凡提为什么会笑?他对三兄弟说了那些话?你想知道吗?这节课我们就来解决这个问题。
2、在下面的()中填上合适的数。
1÷2=(1×5)÷(2×())=(1÷())÷(2÷4)
同学们现在已经能用分数的知识来解决问题了。
二、启发引导,探索新知。
1、下面是六年级三个班的同学到三块同样大小面积的正方形地里去种树,哪个班种植的面积大一些呢?
通过图形的平移、旋转等方法看出三个班种植面积一样大。
2.引导观察得出结论。
(1)通过拼图得到1/2=2/4=4/8
(2)引导观察、比较,提出问题:分子,分母都不相同,它们的大小为什么相同呢?
(3)引导思考探索变化规律:
从左往右看:1/2=1×2/2×2=2/4=2×2/4×2=4/8
反过来看:4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2
3.共同讨论,引导学生抽象概括出分数的基本性质:
(1)怎么做能使分数的分子和分母发生变化,而分数的大小都不变呢?
(2)变化时同时乘或除以小数可以吗?
(3)0可以吗?3/4=3×0/4×0=?(分数的分母不能为0,在除法里0不能作除数,分子和分母都乘或除以相同的数,这个数不能是0。)
归纳分数基本性质:分数的分子和分母都乘或除以相同的数(0除外)分数的大小不变。
4.学习分数的基本性质以后,感觉过去我们学过类似的性质是什么呢?(商不变的性质)
(1)练习在□中填上合适的数
1÷2=(1×5)÷(2×□)=(1×□)÷(1×4)
(2)你能把1÷2这个除法算式改写成分数形式?
你能用今天所学的知识解决老爷爷分地的问题吗?(学生交流、汇报)
5.组织练习
(1)判断:
1/5=1/5×3=1/5()
5/6=5×2/6×3=10/18()
8/12=8×4/12÷4=32/3()
2/5=2+2/5+2=4/7()
3/4=3÷0.5/4÷0.5()
分数的分子和分母都乘或除以相同的数,分数的大小不变。()
(2)画一画、填一填
(3)填空
1/2=1×()/2×()=6/()
10/24=10○()/24○()=()/12
15/60=()/203/()=9/12
6/18=()/()=()/()(有多少种填法)
6.通过练习在此性质中哪些是关键词?
7.巩固练习(选择你喜欢的一题来做)
(1)与1/2相等的分数有多少个?想象一下把手中正方形的纸无限地平分下去,可得到多少个与1/2相等的分数?
(2)9/24和20/32哪一个数大一些,你能讲出判断的依据吗?
三、课堂总结
今天这节课同学们学了分数的基本性质,有什么感想呢?回家讲给爸爸妈妈听好吗!同时希望同学们把今天所学的知识运用到今后的学习和生活中去,做一个生活的有心人。
四、课堂作业:练习十四第1——3题。
板书设计:
分数的基本性质
1/2=1×2/2×2=2/4=2×2/4×2=4/8
分数的分子和分母同时乘以一个不为0的数分数的大小不变
4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2
分数的分子和分母同时除以一个不为0的数分数的大小不变
综上所述分数的基本性质是:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
分数的基本性质教案 篇2
教学内容:
人教版《义务教育课程标准实验教科书数学》五年级(下册)75—78页。
设计思路:
《分数的基本性质》是人教版《义务教育课程标准实验教科书数学》五年级(下册)第四单元《分数的意义和性质》的第三节内容。它是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行学习的。这节课的教学重点是理解和掌握分数的基本性质,并能运用分数的基本性质解决实际问题。教材共安排了两道例题、“做一做1、2题”等。教学中创设学生熟悉的情景,组织学生自主活动,进行主动探究,体会知识的形成过程,体验学习的快乐。通过鼓励学生大胆猜想,让学生动手操作、观察、分析、比较、讨论、合作交流等探究活动,围绕牵动教学主线的“猜想”,开展自主、探究式学习,以验证自己的猜想,发现、总结、概括出“分数的基本性质” ,并应用于实践解决简单的实际问题,做到学以致用,发展学生思维,提高学生学习数学的兴趣,感受学习数学的乐趣,培养学生乐于探究的人生态度。
教学目标:
1.通过教学理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。
2.引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括能力。
3.渗透初步的辩证唯物主义思想教育,使学生收到数学思想方法的熏陶,培养探究的学习态度。
教学重点:
理解和掌握分数的基本性质。
教学难点:
应用分数的基本性质解决实际问题。
教学方法:
直观演示法、讨论法等。
学法:
合作交流、自主探究。
教学准备:
每位学生准备三张同样大小的正方形(或长方形)的纸片;教师:长方形(或正方形)的纸片、PPT课件等。
教学过程:
一.创设情景,激发兴趣
(课件出示)1.120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?
2.说一说:(1)商不变的性质是什么?(2)分数与除法的关系是什么?
( )( )( )3.填空:1÷2= ( ) (1×2)÷(2×2)=( )( )
二.大胆猜想,揭示课题
学生大胆猜想:在除法里有商不变的性质,在分数里会不会有类似的性质存在呢?(生答:有!)这个性质是什么呢?
随着学生的回答,教师板书课题:分数的基本性质。
三 .探索研究,验证猜想
1. 动手操作,验证性质。
(1)学生拿出三张同样大小的正方形(或长方形)纸片,分别平均分成4份、8份、12
份,并分别给其中的1份、2份、3份涂上色,把涂色部分用分数表示出来。 图(略)????引导学生观察、思考:你发现了什么?
(2)小组合作:①观察、分析、比较在组内交流你的发现。
②合作交流,各抒己见。
123③选代表全班汇报、交流,师相机板书:4812
123(3)合作讨论: 为什么相等? 4812
①以小组为单位思考讨论:(引导)它们的分子、分母各是按照什么规律变化的? ②观察它们的分子、分母的变化规律,在组内用自己的话说一说。
2.分组汇报,归纳性质。
a.从左往右看,分子、分母的变化规律怎样?选择一组学生根据探究报告,到黑板上边说边用箭头表示出分子、分母的变化过程。
(根据学生回答
b.从右往左看,分数的分子和分母又是按照什么规律变化的?
(根据学生的回答)
c.有与这一组探究的分数不一样的吗?你们得出的规律是什么?
d.综合刚才的探究,你发现什么规律?
(4)引导学生概括出分数的基本性质,回应猜想。
对这句话你还有什么要补充的?(补充“零除外”)
讨论:为什么性质中要规定“零除外”?
(5)齐读分数的`基本性质。在分数的基本性质中,你认为要提醒大家注意些什么?(同时、相同的数、0除外)。为什么?你能举例说明吗?教师则根据学生回答,在相应的字下面点上着重号。
师生共同读出黑板上板书的分数基本性质(要求关键的字词要重读)。
3.慧眼扫描(下列的式子是否正确?为什么?)(课件出示)
33×263(1) ==(生: 的分子与分母没有同时乘以2,分数的大小改变。) 555555÷515(2) = = (生: 的分子除以5,分母除以6,除数的大小不同,分数1212÷6212
的大小改变。) 11×331==(生:的分子乘以3,而分母除以3,没有同时乘或除以,1212÷3412(3)
分数的大小改变。) 22×x2x(4)==(生:x在这里代表任意数,当x=0时,分数无意义。) 55×x5x
四.回归书本,探源获知
1.浏览课本第75—78页的内容。
2.看了书,你又有什么收获?还有什么疑问吗?(指名汇报、交流)
3.分数的基本性质与商不变性质的比较。
(1)小组合作:讨论分数的基本性质与商不变性质的异同。
(2)小组内交流。
(3)选代表全班交流、汇报。
(4)小结归纳:分数的基本性质与商不变性质内容相同,只是名称不同罢了!
4.自主学习并完成例2,请二名学生说出思路。
五.巩固深化,拓展思维(PPT演示文稿出示下列题目)
1.想一想,填一填。
33×( )988÷( )() 55×( )( )2424÷( )3
学生口答后,要求说出是怎样想的?
2.在下面( )内填上合适的数。
要求:后二题采取师生对出数的游戏形式进行,如先由教师出分子,再让学生对出分母,也可以先由学生出分母,再让教师对出分子。
3.思维训练(选择你喜爱的一道题完成)
3(1)的分子加上6,要使分数的大小不变,分母应加上多少? 5
(2)1/a=7/b(a、b是自然数,且不为0),当a=1,2,3,4??时,b分别等于几?
讨论:a与b之间的关系是怎样的?为什么会存在这样的关系?依据是什么?
(3)把6/20、70/100、45/50、1/2和4/5化成分母相同而大小不变的分数。
思考:分数的分母相同了,有什么作用?揭示学习分数的基本性质的重要性,鼓励学生学好、用好。
六.全课小结
本节课你收获了什么?同桌交流分享你获取知识的快乐!(汇报全班交流)
七.布置作业
P77—78练习十四第1、5、8题。
教学反思
“分数的基本性质”是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行学习的。这节课用“猜想——验证——反思”的方式学习分数的基本性质,是学生在大问题背景下的一种研究性学习。这不仅对学生提出了挑战,而且对教师也提出了挑战。教学中创设学生熟悉的情景,组织学生自主活动,进行主动探究,体会知识的形成过程,体验学习的快乐。通过鼓励学生大胆猜想,让学生动手操作、观察、分析、比较、讨论、合作交流等探究活动,围绕牵动教学主线的“猜想”,开展自主、探究式学习,以验证自己的猜想,发现、总结、概括出“分数的基本性质” ,并应用于实践解决简单的实际问题,做到学以致用,发展学生思维,提高学生学习数学的兴趣,感受学习数学的乐趣,培养学生乐于探究的人生态度。
本节课教学设计突出的特点是学法的设计。从“创设情境、激发兴趣;大胆猜想、揭示课题;探索研究、验证猜想;回归书本、探源获知;巩固深化、拓展思维”到“全课小结”每一个环节完全是为学生自主探究、合作交流学习而设计的。通过教学总结了自己的得与失如下:
1. 创设情境,可以更好地激发学生的学习兴趣,学生有了这样的学习兴趣,我想这节课已经成功了一半。因为兴趣是最好的老师!
2.学生在操作中大胆猜想。
新课标积极倡导学生 “主动参与、乐于探究、勤于思考”,以培养学生获取知识、分析和解决问题的能力。因此我由学生的猜想入手,可以最大限度的调动学生“验证自己猜想”的积极性和主动性,接下来通过学生:动手操作、观察、比较、分析、讨论、合作交流、探究等活动都是为了验证学生自己的猜想,这些环节充分发挥了学生的主动性、积极性,从而凸显学生在学习中的主体地位。教师在教学过程成为学生学习的引导者、支持者、服务者。同时创设猜想的情境,学生通过动手操作、观察、比较、分析、讨论、合作交流的探究方式来经历数学,获得感性经验,进而理解所学知识,完成知识创造过程。并且也为学生多彩的思维、创设良好的平台,由于学生的经历不同,认识问题的角度不同,促使他们解决问题的策略多样化,使生生、师生评价在价值观上都得到了发展。
3.学生在自主探索中科学验证。
分数的基本性质教案 篇3
教学目标:
1.理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。
2.理解和掌握分数的基本性质。
3.较好的实现知识教育与思想教育的有效结合。
教学重点:
理解和掌握分数的基本性质。
教学难点:
能熟练、灵活地运用分数的基本性质。
教学过程:
一、创设情景
师:同学们,为了让你们了解到更多的科技知识,在科技周活动中,学校做了三块科普展板(投影出示教材中的三块展板)。同学们认真观察,你们能提出什么问题?
师:猜想对解决问题很重要,它们到底相不相等?下面以小组为单位,想办法来验证一下。
二、新授
师:同学们想了很多好的方法,哪个小组愿意汇报一下?
生1:我们组是用画图的方法来验证的。我们先画了三个大小一样的正方形表示三块展板,把它们分别平均分成2份、4份和8份,再分别去其中的1份、2份和4份涂上颜色(展示学生画的图)。通过比较我们发现,涂色部分的大小是相等的,所以
生2:我们组是用折纸的方法来验证的。我们先取了三根同样长的纸条,通过对折把它们分别平均分成2份、4份和8份,分别涂色表示(展示学生的折纸情况)。通过折纸我们组也发现(学生在小组中讨论、验证)
师:我们发现的这个规律,就是分数的基本性质。
同学们现在小组内总结一下,什么是分数的基本性质?
(学生认真讨论)
师:同学们汇报一下你们的讨论结果。
三、 自主练习 巩固提高
课本第80页1、2、3、题。
其中,第1题引导学生通过涂色和比较,加深对分数基本性质的直观感受。
第2题二生爬黑板板演,第3、4 题学生自做。师巡视指导。
课堂小结 :
一生小结,他生补充,教师评判。
分数的基本性质教案 篇4
教学内容: 省编义务教材第十册第91—93页例1、例2。
教学目标:
1、体验分数基本性质的探究过程,建构分数基本性质的意义内涵。
2、沟通分数的基本性质和商不变性质的内在联系,实现新知化归旧知,并与后面约分和通分的学习作好前期孕伏。
3、通过猜想、验证、得出结论这充分自主的数学活动,促进学生学习经验的不断积累。
课前准备:
课件,学具袋一个(线段图纸、长方形、绳子)、探究纸一张
教学过程:
1.创设情境,作好铺垫
出示四分之二后说:老师的信封里有一道算式,这道算式和这个分数的值相等,你们猜这是一道怎样的算式?(除法算式。)你能具体猜出是怎样一道除法算式。(2÷4)
为什么你会猜是一道除法算式?(分数与除法有密切的关系)
除法与分数有什么样的关系?
(黑板上出示:被除数÷除数=)
根据2÷4这道除法算式,每人都试着说一道与它相等的除法算式。(根据学生板书:1÷23÷64÷85÷10100÷……)
为什么你认为100÷与2÷4的商是一样的?(2和4同时乘以50商不变,这是根据商不变性质)
什么是商不变性质?(出示:被除数和除数同时乘以或除以相同的数(0除外),商不变。)
2、迁移猜想,引疑激思
分数与除法有这样的关系,除法中有商不变性质,那你们猜分数中有可能存在着类似的性质吗?(有)你能具体说一说?
交流得出:分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
3、自主探究,验证猜想
也许你们的猜想是正确的,科学家的发现往往也是从猜想开始的,但是只有通过验证得到的结论才是科学的,这节课我们也学着来做一名小数学家。
(1)初步验证
①出示:探究报告单,让学生读要求:
a.同桌合作:两人各写一个分数,将它的分子、分母同时乘以或除以一个相同的数,算出新的分数。
b.选择合理的方法验证所前后两个分数是否相等。
c.填写好探究报告单。
选择探究的
分 数
分子和分母同时乘以或除以
一个相同的数
得到的
分 数
选择的分数与得到的分数是否相等
相等( ) 不相等( )
猜想是否成立
成立( ) 不成立( )
选择的分数与得到的分数是否相等相等()不相等()
猜想是否成立成立()不成立()
*:验证方法可用折纸、画线段图、计算、实物……
②学生合作进行探究。
③全班交流:
a、同桌一起上来,拿好探究报告单及验证材料等。
b、两人合作,一人讲解、一人验证演示。
c、得到结论:
(交流2-3组后)问全班同学:你们得到怎样的结论?(一致通过)
刚才我们通过集体努力用不同的方法、不同的分数验证了我们的猜想是成立的。这就是分数的基本性质,板书:分数的基本性质。(齐读)
4、议论争辩,顿悟创新
读一读分数的基本性质,你认为哪些字词是比较重要的。这里的“相同的数”指的是什么数?为什么要“0除外”?
5、训练技能,激励发展
刚才我们通过自己的猜想、验证得出的这条规律,学习了分数的基本性质,到底有什么作用呢?让我们一起来体会一下。
(1)练习明目的
根据分数的基本性质,填空。
1/2=()/8=5/()=()/6=7/()
采取师生对数的游戏形式进行,如先由教师出分子,再让学生对出分母,也可以先由学生出分母,再让教师对出分子。
(2)慧眼辩是非
(3)变式练思维
把下面每组中的异分母分数化成同分母分数。
A、3/4,4/7B、5/6,4/9C、3/5,5/8
分数的分母相同了,有什么作用?揭示学习分数的基本性质的重要性,鼓励学生学好、用好。
(4)竞赛促智慧
①在1—9九个数字中任选一些数字组成大小相等的分数。
可以有:1/2=3/6=4/81/3=2/62/3=4/6这三组。
并让学生继续往下说,从而得出:任何一个分数与之相等的分数有无数个。
②出示:1/a=7/b(说明:a、b都不是0。)
抢答:a=2、a=3、a=6、b=28、b=56时a或b的值。
连贯口答:a=1、2、3、4、5……时b的值。(渗透正比例)
讨论:a、b之间的关系是怎样的?为什么会存在这样的关系?依据是什么?
6、回顾,掌握方法
今天这节课我们学习的分数的基本性质,回忆一下我们是怎样学习的?
学生可能会回答:
生1:我们是根据“商不变的性质”来学习“分数的基本性质”的。
生2:我们是通过猜测的方法学的。
生3:我们还用验证的方法学习。
……
结果语:是的,这节课,我们利用除法和分数的关系以及商不变性质,猜想出分数的基本性质,并且进行了验证与运用,其实数学知识都是相互联系的,学习数学就要学会利用已有知识,去学习新的知识,这就是学习数学的一把金钥匙。老师把这把金钥匙送给每一位同学。
如何进行小学计算教学.ppt
1.小学数学教学中计算教学与情境创设
数学教学中创设情境一定要符合学生年龄特征、贴近学生生活。要通过创设与学生生活紧密相关的生活情境,使学生感受到数学与现实生活的紧密联系,激起对数学的兴趣。如:教学《两位数加二位数的口算》时,创设情景:①二(1)班和二(2)班能合乘一条船吗?②二(3)班和二(4)班能吗?此计算内容,从乘船这个现实生活中提取学习材料,借助生活情景激发探究热情。在设计情景时,通过一条船能坐68人和四个班各个班的人数这些相关数学信息引出计算内容。提出问题后重点解决31+23和32+39是怎么计算的?生1:1+3=4,30+20=50,50+4=54;生2: 32+30=62,62+9=71。师:如果把此情景放在解决问题的课上,主要解决为什么要这样列式31+23,是因为二(1)班和二(2)班的人数合起来就可以知道能否合乘一条船,所以要用加法做。评析:从具体情景中引导学生分析提供信息与所求问题之间的关系来引导探究解决问题的方法与策略,使计算教学与情境创设有机结合。
2.小学数学教学利用游戏活动进行计算教学
低年级学生比较喜欢有一定主题和角色的社会化游戏,可安排一些饶有趣味的动手、动口的游戏,培养学习兴趣。如,①练习口算时,采取开火车的形式。学生在玩的过程中,既获得了玩的乐趣,又使知识得到巩固,大大提升对数学学习的兴趣,使他们更加喜爱数学。②在学习整数四则计算后,组织一次计算比赛。在比赛时,学生积极参与并仔细检查,成绩出来以后,生1春风得意;生2懊恼万分,只恨自己当时没有再认真一点检查。评析:这样在游戏活动中进行了计算教学。
3.小学数学教学中利用动手操作使算法抽象
小学数学教学中如果算理不清,无法适应计算中千变万化的各种具体情况,在计算教学中重视算理和算法是一个十分重要的问题。如:王老师上示范课《分数与除法》时,开始从一个同学的生日引出分蛋糕这一生活情景激发学习兴趣。让学生知道数学知识来源于实际生活的需要。在教学中为了能让学生充分理解3÷4的算理,让每个学生都动手操作把3块饼平均分给4个小朋友可以有几种分法,引导动手操作,得出两种不同的分法,引出两种含义。评析:此学习活动是一个生动活泼的、主动的、富有个性的过程,让学生通过实际操作感悟新知识。课件的生动演示更能让学生明白分饼的过程。另外有的计算题会让学生对算理和算法了解不够深入。如:75+25×3往往很多同学做成(75+25)×3,以为是利用了乘法分配律。原因是对乘法分配律的算理理解得不透彻。因此在算理直观与算法抽象之间应该架设一条桥梁,让学生在剪拼图形的过程中逐步完成“动作思维——形象思维——抽象思维”的发展过程。
4.小学数学教学中关注算法多样与算法优化的组合
《课标》指出:因学生生活背景和思考角度不同,所使用的方法必然是多样的,教师应尊重学生的想法,鼓励学生独立思考,提倡计算方法的多样化。在计算教学中,从某一教学内容来说,也许没有哪一种算法是最好的,最优的,从算法教学的整个系统来看,必然有一种方法是最好的,最优的,是学生后继学习的需要。因此这两者是辩证统一的,既要重视算法的“多样化”,也要重视算法的“优化”。
如何统一?关键在于算法的交流和计算方法的体验上。算法多样化是由学生的知识储备、生活经验、看事物的着眼点、思考方式等不同所必然会产生的,而算法交流和算法体验是理解、优化算法的重要基础,学生在交流和体验中逐步学会“多中选优、择优而用”的思想,学生才会在原有的基础上得到发展,教学质量才会提高。如:教学3/4-1/2时,通过独立思考,得出两种计算现象,在两种计算现象的辨析中想到可通过折纸涂色,化小数这两种方法得出正确的得数,在思辨中体验解决问题策略的多样性,体现学生的个性。评析:在各种方法交流之后教师并没有马上指出通分是比较优化的计算方法,而是把优化的权力交给学生,在充分体验与感悟下自觉地进行优化。接着师:有用化小数计算的吗?为什么?及时引导学生对多种算法进行梳理,使学生深刻体会运用通分的方法是计算异分母分数加减法最优的,同时让他们逐步学会“多中择优,优中择简”的数学思想方法。 5.小学数学教学中让学生把握计算法则要害
小学数学大纲强调,笔算教学应把重点放在算理的理解上,根据算理,把握法则,再以法则指导计算。学生把握计算法则要害在于理解。既要学生懂得怎样算,更要学生懂为什么要这样算。如:教学《用两位数乘》时,让其理解两点:①24×13通过直观图使学生看到是求13个24连加的和是多少,可以先求出33个24是多少,再求10个24是多少,然后把两个积加起来,生明白:计算乘数是两位数的乘法要分两步乘,第三步再相加,这样使学生看得见,摸得着,通过例题教学,使计算的每一步都成为有意义的操作,在操作中理解算理,把握算法。②计算过程中还要强调数的位置,用另一个因数个位上的数去乘一个因数个位上的数所得积对齐写在个位上,用十位上的数去乘一个因数十位上的数所得积对齐写在十位上,从而帮助学生理解数位对齐的道理。评析:通过反复练习,能使学生在理解的基础上把握法则。
6.小学数学教学中强调估算和验算,保证准确率 小学数学教学中估算是人们在日常生活、工作和生产中,对一些无法或没有必要进行精确测量和计算的数量,进行近似的或粗略估计的一种方法。如:估计一定空间的人数,一段距离的长度、一个房间的面积、一定款项可购的货物数等。日常生活和工作中估算的作用越来越突出,在估算教学中,要认真引导学生观察,分析、进行准确判断,培养学生的直觉思维。如:693扩大8倍大约得多少?993×8应等于7944。要学生用估算的方法检查积的最高位有没有错误,先要引导学生认真观察、判断,993接近1000,用1000×8等于8000,993小于1000,积小于8000是正确的。培养学生直觉思维能力,养成了估算和验算的习惯,是计算正确的保证。
7.小学数学教学中运用评价,明晰算理
小学数学教学中运用评价,明晰算理。如:教学《异分母分数加减法》时,师出示:计算3+4= ;0.3+0.4= ;3/10+4/10= ;师引导:3个1加4个1等于7个l;3个0.1加4个0.1等于7个0.1;3个1/10加4个1/10等于7个1/10。师又出示:计算:1/4+1/5生生互动讨论得出。生1:1/4+1/5=0.25 +0.2=0.45师点评:将异分母分数加法转化成小数加法,将未知转化成已知,能够解决问题。生2:将异分母分数加法转化成同分母分数加法,从而解决问题。师引导学生比较两位同学的思路,将异分母分数加法转化成小数或同分母分数加法,实质上将不同的计数单位转化成相同的计数单位,再进行计算,运用了转化策略,将未知转化成已知完成计算。但深入思考,学生对异分母分数加法的算理真的清晰吗?师综合学生的回答,通过评价点拨出算理,使学生知其然,还知其所以然。将感性认识上升到理性思考,同时明晰算理。
总之,在计算教学中,应从教材的特点出发,从学生的实际出发,从儿童的心理特点出发,联系现实生活,联系游戏活动,设计多样化的练习,为学生创设一个充满童趣、富有活力,让学生乐学、爱学的学习环境,使枯燥的计算教学焕发出新的生命力,让计算的课堂变得让学生有所期待。
分数除法教案
作为一位优秀的人民教师,通常需要准备好一份教案,教案有助于学生理解并掌握系统的知识。那么优秀的教案是什么样的呢?以下是我为大家整理的分数除法教案5篇,仅供参考,大家一起来看看吧。
分数除法教案 篇1
单元教材分析: 本单元是在学生已经掌握了分数乘法的基础上,学习分数除法和比的初步知识。主要内容包括分数除法的意义和计算;解决问题;比的意义与基本性质,求比值一化简比,以及比的应用。通过本单元的学习,学生可以比较系统大掌握了分数的四则运算;另一方面又开始了比的初步知识的系统学习,为后面学习百分数和比例提供了基础。
单元教学目标:
1、理解并掌握分数除法的计算方法,回进行分数除法计算。
2、回解答已知一个数的几分之几是多少求这个数的实际问题。
3、理解不的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值
4、能运用比的知识解决有关的实际问题。
学情分析:
本单元学习之前,学生基本上完成了分数加、减以及分数乘法的学习。学生可以根据整数除法的意义理解分数除法的意义。
教学目标:
1、让学生理解分数除法的运算意义。
2、掌握分数除以整数的计算方法。
3、培养学生的计算能力和分析能力。
教学过程: 备注
活动一:
出示例1
每盒水果糖重100克,3盒有多重?
1、读题理解题意
2、列式100*3=300
3、把乘法算式改成两道除法算式
300/3=100300/100=3
4、用千克做单位怎样列式?
1/10*3=3/10
5、|用同样的方法改写成除法算
小结:分数除法的意义
活动二:
出示例2
把一张纸的4/5平均分成2份,每份是这张纸的几分之几?自己试着折一折,算一算
1、把4/5平均分成2份,就是把4个1/5平均分成2份,每份就是2个1/5,就是2/5
2、把4/5平均分成3份,每份就是4/5的1/2,也就是4/5*1/2
3、根据上面的折纸实验和算式,你发现什么规律?
小结:(略)
活动三:
巩固练习:
1、31页做一做1、2
板书设计
略去设计
分数除法教案 篇2
教学目标
1.使学生理解两个整数相除的商可以用分数来表示.
2.明确分数与除法的关系,加深学生对分数意义的理解.
教学重点
理解、归纳分数与除法的关系.
教学难 点
用除法的意义理解分数的意义.
教学步骤
一、铺垫孕伏.
1.读题说得数.
3.2+1.680.8×0.514-7.40.3÷1.54.8×0.02
7.8+0.91.53-0.70.35÷150.4×0.80.8-0.37
2.口述表示的意义.
3.列式计算.
(1)把40棵树苗平均分给5个小组栽,每组栽多少棵?
(2)把8米长的钢管平均分成2段,每段长多少米?
二、探究新知.
1.新课导入.
出示例2:把1米长的钢管平均截成3段,每段长多少米?
板书:1÷3
教师提问:1÷3的结果能用准确的数表示出来吗?怎么办?学习了分数与除法的关系就明白了.(板书、分数与除法)
2.教学例2.
(1)从分数的意义上理解1÷3,即把1米长的钢管着成单位“1”,把单位“1”平均分成3份,表示这样一份的数,可用分数来表示,1米的就是米.(板书米)
(2)学生完整叙述自己想的过程.
(3)反馈练习.
①把1米长的钢管,平均分成8段,每段长多少?
②把1块饼平均分给5个同学,每个同学得到多少块?
3.教学例3.
出示例3:把3块饼平均分给4个孩子,每个孩子分得多少块?
(1)读题列式:3÷4
(2)动手操作:怎样把3块饼平均分给4个同学呢?
(3)学生交流.
甲生:先把每个圆剪成4个块,然后把12个平均分成4份,再把3个拼在一起,每份是块.
乙生:把3个圆放在一起,平均分成4份后,剪下其中的一份,再把1份中的3个拼在一起,得到每个分块.(在3÷4后板书块)
(4)看图根据乙生分饼的过程说出表示的意义.
①乙生把3块饼平均分成了4份,这样的一份是3块饼的,即
②甲生把1块饼平均分成了4份,表示这样的3份的数是.
(5)都是,意义有何不同?(结合算式说出的`两种意义)
明确:表示把3平均分成4份,取其中的1份;
还表示把单位“1”平均分成4份,取这样的3份.
(6)反馈练习:说说下面分数的两种意义
4.归纳分数与除法的关系.
(1)教师提问:怎样用分数来表示整数除法的商呢?
学生归纳:可以用分数表示整数除法的商,用除数做分母,用被除数作分子.也就是说分数既表示分数的意义,又表示整数除法的商.
(板书:)
教师明确:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数.
(2)讨论:用字母表示分数与除法的关系有什么要求?
(3)反馈练习.
三、全课小结.
通过今天的学习,你明白了什么?
四、随堂练习.
1.填空.
分数可以用来表示除法算式的().其中分数的分子相当于(),分母相当于().
2.用分数表示下列各式的商.
4÷511÷1327÷35
9÷913÷1633÷29
3.列式计算.
(1)把5米长的绳子,平均分成12段,每段长多少米?
(2)把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?
(用分数表示)
(3)小明用15分钟走了1千米路,平均每分走几分之几千米?
五、布置作业.
用分数表示下面各式的商.
3÷47÷1216÷4925÷249÷9
分数除法教案 篇3
设计说明
《数学课程标准》指出:学生是学习的主体,教师是组织者、引导者、合作者。因此,本节课以自主探究、小组合作的学习方式为主,采用情境教学法。先通过分月饼来导入新知,再通过实例验证,自己总结归纳出整数除以分数的计算方法,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、验证新知、应用新知、巩固和深化新知的目的。本节课的教学设计有如下特点:
1.注重对算理的探究。
探究算理是计算教学的根本。本节课的教学设计借助除法的意义和直观图形,让学生通过观察、比较与思考,发现整数除以整数(0除外)与整数除以分数知识间的内在联系,初步体会“除以一个不为零的数”与“乘这个数的倒数”之间的联系。这样不仅为学生创设了一个理解分数除法意义的机会,还教会了学生一种学习的方法,即分数除法的意义可以联系整数除法的意义进行学习。
2.突出自主探究的过程。
《数学课程标准》指出:自主探究、合作交流是数学学习的重要方式。本节课充分发挥学生的主体作用,先让学生独立思考,探究计算方法,再在独立探究的基础上,让学生小组合作讨论,探究不同的计算方法。这样不仅可以使学生经历独立探究、小组探究的过程,还可以使学生对“整数除以分数”的算理和算法的理解更深刻。
课前准备
教师准备 PPT课件
学生准备 圆形纸片
教学过程
第1课时 分数除法(二)(1)
⊙创设情境,导入新课
有4张饼,平均每人得到了2张;还是同样的4张饼,平均每人得到了1张。你能猜出两次分别是几个人分的饼吗?你是怎么想的?
设计意图:以猜一猜的形式导入新课,生动地呈现例题,激发了学生学习的兴趣。
⊙合作交流,探究新知
1.初步探究计算方法。
(1)课件出示教材57页上面例题。
(2)组织学生独立完成前两个小题,明确数量关系。
学生独立完成后汇报:
每2张一份,可分成几份?4÷2=2(份)
每1张一份,可分成几份?4÷1=4(份)
(3)组织学生讨论后,明确一个数除以分数的计算方法。
①引导学生动手操作,用圆形纸片代替饼,画一画,分一分,完成填空,并汇报自己的分法。
生1:我把每个圆都平均分成2份,一共可分成8份,可以用算式4÷=4×2=8(份)来表示。
生2:我把每个圆都平均分成3份,一共可分成12份,可以用算式4÷=4×3=12(份)来表示。
②观察算式,明确计算方法。
组织学生观察下面两个算式,交流自己的发现。
4÷=4×2=8 4÷=4×3=12
小结:一个数除以一个不为零的数,等于乘这个数的倒数。
设计意图:让学生充分利用学具,独立完成整数除法的计算,明确题中的数量关系;借助画一画、分一分的方法完成除法到乘法的转化。通过自主观察、小组讨论交流,真正理解一个数除以一个不为零的数,等于乘这个数的倒数的计算方法。
2.进一步巩固计算方法。
(1)出示教材57页中间例题的表格。
(2)引导学生观察表格前两行,讨论、交流表格中各项的意义和计算方法。
(3)组织学生填写表格。
(4)讨论:从表格“算式”一栏,你发现了什么?
(一个数除以一个不为零的数,等于乘这个数的倒数)
3.算一算,巩固计算方法。
(1)组织学生独立完成教材57页下面例题。
(2)汇报交流,说明计算时需要注意的事项。(能约分的要约分)
⊙巩固练习,提升反馈
完成教材58页3题,集体订正。
⊙课堂总结
通过本节课的学习,你有哪些收获?
⊙布置作业
教材58页1、2题。
板书设计
分数除法(二)(1)
4÷=8 4÷=12
分数除法教案 篇4
教学目标:
4、学习运用线段图帮助分析数量关系。
5、加强列方程的思维训练。
6、培养学生分析问题解决问题的能力。
教学过程:备注
活动一:复习与准备
1、根据题意列出方程。
(1)、六年一班有15人参加了合唱队,占全班人数的1/3,六年一班有多少人?
(2)、美术小组的人数比航模小组多1/4。美术小组的人数比航模小组多5人。航模小组有多少人?
活动二:出示例2
一、
1、审题。
2、看例题的插图,理解题目的意思,说说知道了什么,要求什么
3、分析题意,说说你对美术小组的人数比航模组多1/4这一条件的理解。
4、理解数量关系
二、
1、分析、解答
2、说说数量关系。
3、学生根据得到的数量关系列方程解答。
4、交流各自的解法。
小结:关键是搞清哪两个量比较,谁多谁少,多或少了谁的几分之几。
活动三:
巩固联系:
1、41页7、8题
2、41页10题
板书设计
分数除法教案 篇5
教学目标
1.使学生掌握列方程解答“已知一个数的几分之几是多少,求这个数”的应用题的解答方法
2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.
教学重点
找准单位“1”,找出等量联系.
教学难点
能正确的分析数量联系并列方程解答应用题.
教学过程
一、复习、引新
(一)确定单位“1”
1.铅笔的支数是钢笔的 倍.
2.杨树的棵数是柳树的 .
3.白兔只数的 是黑兔.
4.红花朵数的 相当于黄花.
(二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?
1.找出题目中的已知条件和未知条件.
2.分析题意并列式解答.
二、讲授新课
(一)将复习题改成例1
例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的耕地面积是多少公顷?
1.找出已知条件和问题
2.抓住哪句话来分析?
3.引导学生用线段图来表示题目中的数量联系.
4.比较复习题与例1的相同点与不同点.
5.教师提问:
(1)棉田面积占全村耕地面积的 ,谁是单位“1”?
(2)如果要求全村耕地面积的 是多少,应该怎样列式?(全村耕地面积× ).
(3)全村耕地面积的 就是谁的面积?(就是棉田的面积)
解:设全村耕地面积是 公顷.
答:全村耕地面积是75公顷.
6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?
(1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)
(公顷)
(根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)
(二)练习
果园里有桃树560棵,占果树总数的 .果园里一共有果树多少棵?
1.找出已知条件和问题
2.画图并分析数量联系
3.列式解答
解1:设一共有果树 棵.
答:一共有果树640棵.
解1: (棵)
(三)教学例2
例2.一条裤子75元,是一件上衣价格的 .一件上衣多少钱?
1.教师提问
(1)题中的已知条件和问题有什么?
(2)有几个量相比较,应把哪个数量作为单位“1”?
2.引导学生说出线段图应怎样画?上衣价格的
3.分析:上衣价格的 就是谁的价钱?(是裤子的价钱)谁能找出数量间相等的联系?(上衣的单价× =裤子的单价)
4.让学生独立用列方程的方法解答,并加强个别辅导.
解:设一件上衣 元.
答:一件上衣 元.
5.怎样直接用算术方法求出上衣的单价?
(元)
6.比较一下算术解法和方程解法的相同之处与不同之处.
相同点:都要根据数量间相等的联系式来列式.
不同点:算术解法是按照分数除法的意义直接列出除法算式;而方程解法则要先设未知数,再按照等量联系式列出方程.
三、巩固练习
(一)一个修路队修一条路,第一天修了全长 ,正好是160米,这条路全长是多少米?
提问:谁是单位“1”?数量间相等的联系式是什么?怎样列式?
(米)
(二)幼儿园买来 千克水果糖,是买来的牛奶糖的 ,买来牛奶糖多少千克?
(三)新风小学去年植树320棵,相当于今年植树棵数的 .今年、去年共植树多少棵?
1.演示:分数除法应用题
2.列式解答
四、课堂小结
这节课我们学习了列方程解答分数除法应用题的方法.这类题有什么特点?解题时分几步?
五、课后作业
(一)一桶水,用去它的 ,正好是15千克.这桶水重多少千克?
(二)王新买了一本书和一枝钢笔.书的价格是4元,正好是钢笔价格的 .钢笔价格是多少元?
(三)一种小汽车的最快速度是每小时行140千米,相当于一种超音速飞机速度的 .这种超音速飞机每小时飞行多少千米?
《分数与除法的关系》认识分数PPT课件
这门课程,数与除法的关系是在学习了分数的意义后进行的,目的是使学生初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示它们的商。这部分内容的教学,不但可以加深学生对分数意义的理解,而且是后面学习假分数、带分数、分数的基本性质以及比、百分数的基础,所以沟通分数与除法的联系至关重要。101教育PPT里面有很多这个课程资源里面有很多
《分数的基本性质》说课稿
作为一名教师,很有必要精心设计一份说课稿,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。那么应当如何写说课稿呢?以下是我精心整理的《分数的基本性质》说课稿,欢迎阅读,希望大家能够喜欢。
《分数的基本性质》说课稿1
一、说教学理念
1、以学生发展为本,着力强化个人主体意识,同时关注学生学习动机、兴趣等情感态度。
2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会和充分的练习空间。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化,以及“用数学学数学”等数学思想方法。
二、说教材
1、教学内容
《分数的基本性质》一课是五年级下册第四单元的一个内容。这部分内容是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据。因此,分数的基本性质是本单元的教学重点之一。在讲解这一知识点时,应注意加强整数商不变性质的回顾,这样既帮助学生理解了分数的基本性质,又沟通了新旧知识的内在联系。
2、学情分析
学生在三年级上学期已经初步认识了分数,知道分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。另外,本单元的知识内容概念较多,比较抽象,学生的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。在数学教学中,化抽象为具体、直观,对于顺利开展教学是十分必要的。
3、教学目标:
(1)通过教学使学生理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。
(2)引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括能力。
(3)渗透初步的辨证唯物主义思想教育,使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。
教学重点:理解和掌握分数的基本性质;教学难点:学习自主探索,发现和归纳分数基本性质,以及应用它解决相应的问题。教具学具:课件,三张同样大小的长方形纸条、彩笔。
三、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有:
1、实际操作法
指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
2、直观演示法
先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。
3、启发式教学法
运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在积极的思维中获取新知。
四、说学法
1、学生在学习分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在纸条上涂出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,在尝试中发现,在实践中体验,从而加深学生对分数基本性质的理解。
2、在学习例题的过程中教师先采用启发法,再采用学生自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成练习题,达到检验自学的目的。
五、说教学过程
(一)、新知铺垫
(二)、新知导入
(三)、新知探究
(四)、新知探究
(五)、新知训练
(六)、新知应用
(七)、新知强化
(八)、新知小结
1、新知铺垫和导入
上课伊始我利用分饼的故事来激发学生的学习兴趣,让学生亲自动手折一折、分一分、比一比,从直观上让学生感受到这几个分数大小是相等的,而这几个分数的分子和分母都不相等,这其中有什么规律呢?继而揭示课题。
(设计意图)好奇是学生的天性,通过分地故事能快抓住学生的好奇心,使他们在心理上产生悬念,带着疑问迅速切入正题。
2、新知探究
(1)、动手操作、形象感知
首先让学生用三张同样大小的长方形纸条折一折,再涂色表示出每张纸的1/2,2/4,4/8。观察涂色部分,说说发现了什么?在学生汇报时,说出:涂色部分面积相等,也就说明这三个分数大小相等。然后通过电脑再进一步证实学生的发现:通过观察,我们发现三个阴影部分大小相等,说明三个分数大小相等。
(设计意图)主要是利用学生爱动手以及直观思维的特点,让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好迁移,而且激活了课堂气氛,营造了良好的学习开端。
(2)、观察比较,探究规律
首先,在学生折纸的基础上,通过小组讨论交流总结出分数的基本性质,让学生理解“同时乘上或者除以”的意义,以及为什么要强调“0除外”这个条件。其次,总结出分数的基本性质后,要和以前学过的商不变规律进行对比,找出二者间的联系,使学生更好的理解、运用性质。
(设计意图)这一环节重在培养了学生大胆交流、语言表达的能力,同时学生在汇报交流中使问题逐渐明朗化,最终验证了自己的猜想。要充分放手,让学生畅所欲言。
3、新知训练
在巩固阶段,我安排了三个不同层次的习题。其中“新知训练”是对“分数的基本性质”做进一步的诠释。“新知应用”是导入分饼时的题,难度不大,首尾照应,最后还安排了“新知强化”环节,属于开放性题。整个习题设计部分,题目呈现方式的多样,吸引了学生的注意力,激发了学生兴趣,培养了学生创新意识和解决问题的能力。
《分数的基本性质》说课稿2
一、说教材
《分数的基本性质》是在分数教学中占有重要的地位,在小学数学学习中起着承前启后的作用。它既以分数的意义、分数的大小比较为基础,又与整数除法及商不变的性质有着内在的联系,更是分数的约分、通分的依据,也是进一步学习分数加减法计算、比的基本性质的基础。因此,分数的基本性质是该单元的教学重点之一。
二、说学情
学生在三年级上学期已经初步认识了分数,以及同分母分数的大小。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。五年级学生已经养成了合作学习的习惯,并且已经具有了一定的分析和解决问题的能力,再加上他们所具有的一定的生活经验,因此能够在教师的引导下完成“质疑——探索——释疑——应用”这一完整的学习过程。
三、说教学目标
依据新的《数学课程标准》,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求。根据本节课的具体内容并结合学生的实际情况,我制定了以下教学目标:
知识与技能:让学生亲身经历“分数基本性质”抽象概括的过程,理解和掌握分数的基本性质,并能初步运用分数的基本性质解决简单的数学问题。
过程与方法:让学生经历发现问题、探究问题、解决问题的全过程,在观察、猜想、验证等探索活动中,培养学生观察--探索--抽象--概括的能力以及合情推理能力,体验解决问题策略的多样性。
情感与态度:使学生在分数基本性质的探究活动中,获得成功的体验,建立自信心,感受到数学的严谨性,及渗透事物是相互联系、发展变化的辩证唯物主义观点。
教学重点:理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。
教学难点:让学生经历自主探索,发现和归纳分数的基本性质,并会应用分数的基本性质解决相关问题。
教学准备:三张同样大小的长方形纸张,彩色笔
四、说教学方法
树立以“以学生发展为本”、“以学定教”的思想,为实现教学目标,有效地突出重点、突破难点,我遵循学生的认知规律,以建构主义学习理论为指导,在探究分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。创设了一种“情境导入、动手体验、自主探索”的课堂教学形式,以“自主探究”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证——质疑讨论、完善猜想等,把这一系列探究过程放大,把“过程性目标”凸显出来。
五、学法
有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,自主探究法,合作交流的学习方式,让学生通过独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。
六、说教学过程
为了全面、准确地引导学生探索发现分数的基本性质,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了以下五步教学环节:
1、创境设疑: 回顾旧知,引发思考
2、自主探究: 动手实践,发现规律
3、交流归纳:揭示规律,巩固深化
4、分层精练:多层练习,多元评价
5、感悟延伸:课堂小结,加深理解
第一环节:创境设疑
结合六一儿童节的到来,创设分蛋糕的情景,妈妈分得公平吗?课始便迅速地抓住了学生的好奇心,使课堂教学有了一个好的开始。鼓励学生当小法官,则极大地调动了学生的积极性,使他们在心理上产生悬念,进一步激发学生的学习兴趣,为后面的学习做好了铺垫。这样设计也是从学生已有的经验和情感出发,找准新知的最佳切入点,为学生后面的联想和猜想巧设“孕伏”。
第二环节:自主探究
通过折纸、涂色的动手操作活动,使学生亲身经历并获得非常具体、真切的感知,为探究分子、分母的变化规律提供认知基础。教师通过五个有层次的问题,分层质疑,分层提问,分层评价,尽量地关注到了每一个层次的学生,引导学生逐步在自主探索、合作互助的学习方式中初步理解并能简单概括出分数的基本性质,并及时强调了0除外的意义,使学生体验到解决问题策略的多样性,发展学生的实践能力和创新精神,培养学生的合作意识。
第三环节:交流归纳
在这一环节,教师引导学生在观察与分析、探索与思考分数的基本性质的基础上不断生成新问题,通过质疑,借助知识的迁移,沟通分数的基本性质与商不变性质之间的联系。引导学生应用分数和除法的关系,以及整数除法中商不变的性质,说明分数的基本性质。这样的设计就让学生感受到了数学知识的内在联系,同时渗透“事物之间是相互联系”的辨证唯物主义观点,培养学生观察--探索--抽象--概括的能力。
第四环节:分层精练
这个环节让学生对分数的基本性质再一次的体验,感受,研究,同时也是整节课的亮点之一,练习分层,评价分层,通过分层练习,关注到每一个层次的学生,让每一个学生都有发展。教师结合本班学生的学习特点,设计了由浅入深,由易到难的练习,基本练习让90%的同学体验到了学习的快乐,综合练习让80%的同学品尝到了成功的喜悦,拓展练习则留到课后,让学生在自主探究中、讨论交流中、知识的沉淀中进一步加深对知识的理解和掌握。
第五环节:感悟延伸
通过小结、反思,查漏补缺,学生在交流收获、互相帮助的过程中,使学生对知识有个系统的回顾和认识,从而进一步培养学生的知识概括能力。
总之,本节课教学是坚持了“学生是探索的主体”这一教学原则,面向全体学生,充分的引导学生动手实验,自主探索,质疑延伸,合作交流,让每一个学生在探索的过程中感受数学和日常生活的紧密联系,体验学习数学的快乐,培养了创新精神和实践能力。
《分数的基本性质》说课稿3
一、说教材分析
《分数的基本性质》是义务教育课程标准实验教材人教版五年级下册第五单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系、整数除法中商不变的规律这些知识为基础的。分数的基本性质是建立在分数大小相等这一概念基础之上的。而两个分数的大小相等,并不意味着两个分数的分子、分母分别相同。分数的基本性质又是约分和通分的基础,而约分和通分则是分数四则混合运算的重要基础,因此,理解分数的基本性质显得尤为重要。
二、说教学目标
根据教材分析制定如下的教学目标:
知识与技能:
1、使让学生理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。
2、培养学生观察、分析和抽象概括能力。
过程与方法:
1、让学生经历分数基本性质的探究过程。
2、通过引导启发,帮助学生学会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数的方法。
情感态度与价值观:
1、体验合作探究的乐趣,培养学生的团结协作精神。
2、渗透“事物间相互联系”的辩证唯物主义观点。
教学重点:理解分数基本性质。
教学难点:归纳分数的基本性质,并运用性质转化分数。
教具教学准备:
多媒体课件,小棒、纸条、圆形纸片
三、说教学策略
为了营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着“将课堂还给学生,让课堂焕发生命活力”的指导思想,根据学生的认知规律,我采取以下教学策略:
1、采用了创设情境、引导探究、引导自学、组织讨论、组织练习等教学策略。
2、实际操作:指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促进学生的感性认识逐步理性化。
3、引导概括:先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。
4、新课标指出:有效的数学学习活动,不能单纯模仿与记忆。动手实践、自主探索与合作交流是本节课学生学习的重要方式。
四、说教学流程
结合五年级学生的理解能力和年龄特征,我将本课的教学设计为六个环节。
(一)、创设情境,引发猜想
首先我为学生带来一个《猴王分饼》的故事。
猴山上的小猴子最喜欢吃猴王做的饼了,有一天,猴王做了三块大小一样的饼分给小猴子吃。它先把第一块饼平均切成4块,分给猴1一块;猴2见了说:“太少了,我要2块。”猴王又把第二块饼平均切成8块,分给猴2两块;猴3更贪,它抢着说:“我要3块,我要3块……”猴王又把第三块饼平均切成12块,分给猴3两。小朋友,你知道哪只猴子分得的饼多吗?
“同学们,你们认为猴王分得公平吗?”引发学生的猜想。
(这样就激发了学生的学习兴趣,为后面的'学习做好了铺垫。)
(二)自主探索,寻找规律
(下面这个环节是课堂教学的中心环节,新课标强调,要让学生在实践活动中进行探索性的学习。根据这一理念,我设计了下面的活动。让学生在体验中学习,在学习中体验。)
1、小组合作 验证猜想
这只是大家的猜想,究竟哪只猴子分得的饼多呢?亲自分一分,验证你们的猜想。
学生操作验证---集体汇报交流----展示成果
2、既然三只小猴分得的饼同样多,那么表示他们分得饼的三个分数是什么关系呢?这三个分数什么变了,什么没变?
学生得出:这三个分数是相等关系,分数的分子和分母变化了,但分数的大小不变。
3、猴王把三张大小一样的饼分给小猴一部分后,剩下的部分大小相等吗?通过观察演示得出3/4=6/8=9/12
4、我们班有64名同学,分成了四组,每组16人。那么,第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出1/2=2/4=32/64
(三)比较归纳 揭示规律
1、出示思考题
1/4=2/8=3/12
比较每组分数的分子和分母:
从左往右看,是按照什么规律变化的?
从右往左看,又是按照什么规律变化的?
通过观察,你发现了什么?
让学生带着上面的思考题,先独立思考,后小组讨论、交流。
2、集体交流,归纳性质。
3、师生共同总结规律,找出性质中的关键词,然后齐读,注意关键的字词要重读。
4、现在,大家知道猴王是运用什么性质分饼了吗?
5、沟通分数的基本性质与商不变性质之间的联系。引导学生应用分数和除法的关系,以及整数除法中商不变的性质,说明分数的基本性质。
(这样的设计就让学生感受到了数学知识的内在联系,同时渗透“事物之间是相互联系”的辨证唯物主义观点)
(四)自学例2
1、自学例2。
2/3 = 2×()/3×4 =()/12
10/24 = 10 ( )/24 ( ) = ( )/12
2、展示交流:重点让学生说说分母、分子是如何变化的?根据什么?
这样设计的目的是学生学会的老师不包办,从而培养了学生的自学能力。
(五)多层练习 巩固深化
1、填上合适的数,说说你填写的根据
1/3 =()/6 10/15 =()/3 1/4 = 5/()
我想通过这道题让学生进一步加深对分数基本性质的形成过程的理解,从而培养学生的语言表达能力。
2、说一说下面各式运用分数的基本性质是否正确
5/24=5×2/24÷2=10/12 ( )
4/9=4÷2/9÷3=2/3 ( )
13/18=13+2/18+2=15/20 ( )
在这我设计了同学们在平时做题中容易混淆的问题,提醒同学们今后要注意。
3、想一想:(选择你喜欢的一道题来做)
与1/2相等的分数有多少个?想像一下把手中的正方形的纸无限地平分下去,可得到多少个与1/2相等的分数?
9/24和20/32哪一个数大一些,你能讲出判断的依据吗?
在这我让同学们充分发挥想象,灵活运用分数的基本性质。为后面学习约分和通分的知识奠定基础。
(六)本课小结
同学们,通过这节课,你有哪些收获?
学生在交流收获的过程中,培养学生的知识概括能力。
五、说教学评价
1、教学过程中采用自我、小组、集体等多种评价方式,激发起学生交流的兴趣。
2、多媒体课件的应用,创设生动的教学情境。
3、学生在发现、体验、合作、交流、归纳、总结中,自主参与整个学习过程,营造独立、自主的学习空间,学生成为课堂的主人。
《分数的基本性质》说课稿4
我说课的内容是:人教版小学数学课标教材五年级下册75页—76页《分数基本性质》。下面我就从教材分析、学情分析、教学目标、教法学法及教学过程五个方面来谈一下教学过程设计及设计意图。
一、教材分析
本节的内容属于概念教学。《分数基本性质》在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础,还是约分、通分的依据。
二、学情分析
学生已经清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本节课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子、分母变了,分数的大小却没变。学生在这种“变”与“不变”中发现规律,掌握新知识。
三、教学目标
综合分析课程标准要求及学生实际,我确定本节教学目标如下:
1.理解和掌握分数的基本性质,并会运用分数的基本性质把不同的分数化成分母(或分子)相同而大小不变的分数。
2.初步养成观察、比较、抽象概括的逻辑思维能力,并且在自主探究中正确认识和理解变与不变的辩证关系。
3.受到数学思想的熏陶,养成乐于探究的学习态度。
教学重点:理解掌握分数的基本性质,它是约分、通分的依据。
教学难点:让学生自主探索、发现和归纳分数的基本性质,以及应用它解决相关的问题。
四、教法学法
根据本节课的教学目标,考虑到学生已有的知识、生活经验和认知特点,结合了教材内容,本一课我主要采用猜想验证与探索发现的教学模式。在分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析。通过了观察、比较,提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用,激发学生学习兴趣,同时让学生获得成功体验。
五、教学过程
本一节课的教学过程我分五个部分进行
第一部分:故事设疑,揭示课题。以唐僧师徒分饼的故事创设问
题情境,揭示本节课要研究的问题。
第二部分:组织讨论,动手操作。主要是组织学生动手进行折、画、标等活动,初步理解分数基本性质。
第三部分:合作探究,发现规律。主要的是学生找出规律,并利用规律解决问题。
第四部分:多层练习,巩固深化。主要是巩固所学知识并进行拓展提高。
第五部分:梳理知识,反思小结。主要是总结全课。
其中,第三部分“合作探究,发现规律”可以细化成为三个环节:
环节一:动手操作,进行比较
这一环节是在第二部分的基础上进行的,我给每组学生三张大小一样的长条纸,让学生用分数表示涂色部分,并比较大小。此环节的设计主要是培养学生的比较能力。
环节二:呈现问题,引导观察
这一环节主要是呈现给学生这样的一个问题,“第一环节中的分数的分子、分母都不一样,为什么大小相等”,引导学生从左到右、从右到左两方面去观察,此环节的设计主要是培养学生的观察能力。
环节三:交流汇报,得出规律
这一环节主要是学生汇报交流,得出结论。
如果学生没有概括出“0除外”就设计两组练习,分子、分母同乘或除以0,完善结论;如果概括出来了,再追加一个问题“为什么强调0除外”,巩固结论。最终推导出分数的基本性质----分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。此环节的设计主要是培养学生的抽象概括能力。
应该强调的是,无论学生说的多么好,教师最后的总结和确认是不可缺少的。
以上是我对《分数基本性质》一节的教学设计意图,有不当之处,请各位批评指导。
关于分数除法的资料/要多
分数乘整数
分数乘整数,用分数的分子和整数相乘的积做分子,分母不变。能约分(化简)的要约分(化简)。 例1:4/5×3=4×3/5=12/5 例2:3/22×2=3×2/22=6/22=3/11
分数乘分数
分数乘分数,用分子相乘的积做分子,分母相乘的积做分母。能约分(化简)的要约分(化简)。 例1:5/6×1/3=5×1/6×3=5/18 例2:2/5×1/4=2×1/5×4=2/20=1/10
分数除以整数(1)
分数除以整数,分母不变,如果分子是整数的倍数,则用分子除以整数,最后不是最简分数要化成最简分数。 例1:4/15÷2=4÷2/15=2/15 例2:42/30÷7=42÷7/30=6/30=1/5
分数除以整数(2)
分数除以整数,分母不变,如果分子不是整数的倍数,则用这个分数乘这个整数的倒数,最后不是最简分数要化成最简分数。 例1:3/8÷2=3/8×1/2=3×1/8×2=3/16 例2:4/5÷6=4/5×1/6=4×1/5×6=4/30=2/15
分数除以分数
分数除以分数,等于被除数乘除数的倒数,最后不是最简分数要化成最简分数。 例1:2/3÷3/4=2/3×4/3=2×4/3×3=8/9 例2:2/15÷1/3=2/15×3=2×3/15=6/15=2/5