本文目录一览:
- 1、《怎样判定三角形相似》ppt课件4
- 2、什么是相似三角形定义
- 3、怎样判定三角形相似.ppt
- 4、数学相似三角形
- 5、PPT中,这个类似三角形的图形怎么做出来的呢?还有第二个图中那个大四边形右下角不规则的图形怎么做的?
- 6、ppt课件 1,什么叫做相似三角形
《怎样判定三角形相似》ppt课件4
(1)平行于三角形一边的直线和其他两边所构成的三角形与原三角形相似;(2)两边对应成比例且夹角相等,两个三角形相似;(3)三边对应成比例,两个三角形相似.;(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似
什么是相似三角形定义
三角分别相等,三边成比例的两个三角形叫做相似三角形(similar triangles)
相似三角形是几何中重要的证明模型之一,是全等三角形的推广。全等三角形可以被理解为相似比为1的相似三角形。相似三角形其实是一套定理的集合,它主要描述了在相似三角形是几何中两个三角形中,边、角的关系。
相似三角形的性质
定义 相似三角形的对应角相等,对应边成比例。
定理 相似三角形任意对应线段的比等于相似比。
定理 相似三角形的面积比等于相似比的平方。
相似三角形的判定
类比全等三角形的判定定理,可以得出下列结论:
定理 两角分别对应相等的两个三角形相似。
定理 两边成比例且夹角相等的两个三角形相似。
定理 三边成比例的两个三角形相似。
定理 一条直角边与斜边成比例的两个直角三角形相似。
怎样判定三角形相似.ppt
定理1 两角分别对应相等的两个三角形相似。
定理2 两边成比例且夹角相等的两个三角形相似。
定理3 三边成比例的两个三角形相似。
定理4 一条直角边与斜边成比例的两个直角三角形相似。
看错了是ppt哈,百度搜就会有的
数学相似三角形
一、相似三角形的性质可以类比全等三角形的性质来研究
全等三角形
相似三角形
1 对应边相等 对应边成比例
2 对应角相等 对应角相等
3 对应中线相等 对应中线的比等于相似比
4 对应角平分线相等 对应角平分线的比等于相似比
5 对应高相等 对应高的比等于相似比
6 周长相等 周长比等于相似比
7 面积相等 面积比等于相似比的平方
2.学习本点要注意的问题:
(1)相似三角形的性质可以类比全等三角形的一些性质得到。
(2)相似三角形的面积比等于相似比的平方。要明确它们的两个关系式:面积比=(相似比)2;
2 相似三角形的判定
相似三角形的知识与圆有着密切的联系,所以我们一定要把这部分知识学好,为学习圆这部分知识打下良好基础。
我们本讲重点研究两个问题:一、比例式,等积式的证明;二、双垂直条件下的证明与计算。
一、等积式、比例式的证明:
等积式、比例式的证明是相似形一章中常见题型。因为这种问题变化很多,同学们常常感到困难。但是,如果我们掌握了解决这类问题的基本规律,就能找到解题的思路。
(一)遇到等积式(或比例式)时,先看是否能找到相似三角形。
等积式可根据比例的基本性质改写成比例式,在比例式各边的四个字母中如有三个不重复的字母,就可找出相似三角形。
(二)若由求证的等积式或比例式中找不到三角形或找到的三角形不相似,则需要进行等线段代换或等比代换。有时还需添加适当的辅助线,构造平行线或相似三角形。
二、双垂直条件下的计算与证明问题:
“双垂直”指:“Rt△ABC中,∠BCA=900,CD⊥AB于D”,(如图)在这样的条件下有下列结论:
(1)△ADC∽△CDB∽△ACB
(2)由△ADC∽△CDB得CD2=AD·BD
(3)由△ADC∽△ACB得AC2=AD·AB
(4)由△CDB∽△ACB得BC2=BD·AB
(5)由面积得AC·BC=AB·CD
(6)勾股定理
这里有些题
参考资料:
PPT中,这个类似三角形的图形怎么做出来的呢?还有第二个图中那个大四边形右下角不规则的图形怎么做的?
word中插入形状选择一个相似的图形,比如三角形,弧形等,然后到格式工具栏找到编辑形状,在下面选择转换为任意多边形,然后再选择编辑形状下选编辑顶点,调整顶点和曲线方向,就能得到任何不规则图形。下面的也是。熟练了就很好调了,耐心!
ppt课件 1,什么叫做相似三角形
你可以去百度文库看看,里面很多免费的课件。。。。包括三角形相似相关课件!