本文目录一览:

怎样列解方程解应用题?

列方程解应用题是解决问题的基本方法之一。在这个过程中,只要方法得当,计算正确,一般都能准确解决问题。它的具体步骤是:

工具/原料

纸、笔。

方法/步骤

1/6分步阅读

理解题意。仔细读题,理解题意,弄懂题里的已知条件和所求问题。

2/6

分析问题。如果是分数应用题,可以画线段图帮助理解。

3/6

找出等量关系。这是解决此类问题的关键步骤,找出题里的等量关系,这是最重要的步骤。也是这类问题的难点。

4列方程,解方程。把未知数设为一个字母,通常情况下设为x,根据等量关系列方程,并解方程。

5检验。检验的过程是学生往往忽略的,但这是很重要的一步,只有检验后才可以确定答案正确与否。一般是把答案看成已知条件代人原来的题意中,算出的结果和原来的条件一致就是正确的,否则就是错误的。

6

写出答案。这是列方程解应用题的最后一步,也是不可缺少的一步。

注意事项

检验的过程不可忘记,一定要检验后才写上答案。

解方程应用题的步骤

列方程解应用题是初中数学的重要内容之一,其核心思想就是将等量关系从情景中剥离出来,把实际问题转化成方程或方程组, 从而解决问题。

列方程解应用题的一般步骤(解题思路)

(1)审——审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).

(2)设——设出未知数:根据提问,巧设未知数.

(3)列——列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.

(4)解——解方程:解所列的方程,求出未知数的值.

(5)答——检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)

【典型例题】

例1 将一批数据输入电脑,甲独做需要50分钟完成,乙独做需要30分钟完成,现在甲独做30分钟,剩下的部分由甲、乙合做,问甲、乙两人合做的时间是多少?

解析:首先设甲乙合作的时间是x分钟,根据题意可得等量关系:甲工作(30+x)分钟的工作量+乙工作x分钟的工作量=1,根据等量关系,列出方程,再解方程即可.

设甲乙合作的时间是x分钟,

【方法突破】

工程问题是典型的a=bc型数量关系,可以知二求一,三个基本量及其关系为:

工作总量=工作效率×工作时间

例1某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。已知某人有5道题未作,得了103分,则这个人选错了 多少道题。

解:设这个人选对了x道题目,则选错了(45-x)道题,于是

例2某校高一年级有12个班.在学校组织的高一年级篮球比赛中,规定每两个班之间只进行一场比赛,每场比赛都要分出胜负,每班胜一场得2分,负一场得1分.某班要想在全部比赛中得18分,那么这个班的胜负场数应分别是多少?

因为共有12个班,且规定每两个班之间只进行一场比赛,所以这个班应该比赛11场,设胜了x场,那么负了(11-x)场,根据得分为18分可列方程求解.

【解析】

设胜了x场,那么负了(11-x)场.

2x+1•(11-x)=18

x=7

11-7=4

那么这个班的胜负场数应分别是7和4.

【方法突破】

比赛积分问题的关键是要了解比赛的积分规则,规则不同,积分方式不同,常见的数量关系有:

每队的胜场数+负场数+平场数=这个队比赛场次;

得分总数+失分总数=总积分;

失分常用负数表示,有些时候平场不计分,另外如果设场数或者题数为x,那么x最后的取值必须为正整数。

一题多解ppt

 怎样上一题多解训练课?下面仅就多步应用题教学过程中的一题多解训练课,初略地介绍一下我的基本做法:

第一步,进行一题多解的实际练习。

在实际教学中,我一般采用以下两种方法:

1.一般的一题多解的练习。题目是由浅入深,由易到难。解法、时间、速度等要求逐步提高。

题1南北两城的铁路长357公里,一列快车从北城开出,同时有一列慢车从南城开出,两车相向而行,经过3小时相遇,快车平均每小时行79公里,慢车平均每小时比快车少行多少公里?

解法1 [357-(79×3)]÷3

=[357-237]÷3

=120÷3

=40(公里)

即慢车平均每小时行40公里,

已知快车平均每小时行79公里,

∴慢车平均每小时比快车少行多少公里就是

79-40=39(公里)

答:慢车平均每小时比快车少行39公里。

解法2 79-(357÷3-79)

=79-(119-79)

=79-40

=39(公里)

答:(同上)

解法3 设慢车平均每小时行x公里

79×3+3x=357

3x=357-237

3x=120

x=40(公里)

79-40=39(公里)

答:(同上)

……

2.看谁的解法多。我们知道,一题多解训练的目的,不是单纯地解题,而是为了培养和锻炼学生的思维,发展学生的智力,提高学生的解题能力。所以,在实际训练中,我们不能满足于学生会用几种一般的方法来分析解答应用题。如果只以一般的几种解法为满足,对学生通过多向思维求得的其他解法特别是一些较为复杂的解法不提倡,不鼓励,甚至还挖苦、批评、责备学生,这样就会挫伤学生思维的积极性,影响学生的学习兴趣,不利于培养学生的创造能力。实践证明,学生的解法越多,表明学生的思维越灵活,思路越开阔。学生能够根据题意和数量关系,运用所学习和掌握的知识不拘泥、不守旧,乐于打破一般的框框去进行广阔的思维,十分用心地去探求各种解题方法,就越有利于促进其思维的发展,提高创造能力。我们就越应当给予肯定和鼓励。对于学生“别出心裁”、“独辟蹊径”的解题方法,我总是给以表扬和鼓励。这对激发学生的学习兴趣,调动一题多解的积极性是很有好处的。

例如:上面的题1,除了那三种解法之外,学生还想出以下十几种解法:

解法4 设慢车平均每小时行x公里

(79+x)×3=357

237+3x=357

3x=357-237

3x=120

x=40(公里)

79-40=39(公里)

答:(同上)

解法5 设慢车平均每小时行x公里

3x=357-79×3

……

解法6 设慢车平均每小时行x公里

357-3x=79×3

 ……

一道应用题,学生能够想出这么多的解法,表明学生的思路很开阔,思维很灵活。智力发达的同学争先恐后,智力较差的同学也积极动脑。全班同学都进入积极的思维状态,互相启发,不甘落后,课堂气氛很活跃,学生的学习积极性都可以调动起来。

第二步,口述不同的解题思路和解题方法。

口述不同的解题思路和解题方法,就是只要求学生说出不同的(或叫新的)解题思路和解题方法,不用具体解答。它是进行一题多解实际练习的另一种形式。这种练习和前一种练习所不同的地方是:前一种练习偏重于学生动脑动手,进行一题多解的实际练习;这种练习偏重于学生动脑动口,寻求新的解题思路和不同的解题方法。简言之,前者是动脑动手,后者是动脑动口。进行这种训练,主要是为了使学生在单位时间内更多地、更好地认识和掌握应用题的多种解法,提高一题多解训练的课堂教学效率。

在实际教学中,这种练习我一般是采取全班和分组两种形式交错进行。开始,全班同学一起,分别对某一道应用题口述不同的解题思路和解题方法,一人一次口述一种。然后分组进行,便于增加学生口述的机会,达到人人动脑,人人口述。这种练习的基本过程是:先全班后小组再全班。这样交错进行。好、差学生都有口述机会,达到共同提高的目的。

例1 两地相距383公里,甲乙两人从两地相向而行,甲先走1天,一共走5天才和乙相遇,已知每天甲比乙多走10公里,问甲乙两人每天各走多少公里?

口述1:甲走5天,乙仅走5-1=4(天)。假如甲每天比原来少行10公里,则与乙的速度相等。那么甲行5天,乙行4天,就相当于乙行5+4=9(天),这时两人还相距10×5=50(公里)。乙9天共行383-50=333(公里),乙每天走的就可以求出来了。乙每天走多少公里知道了,甲每天走的也就可以知道了。

口述2:甲行5天,乙行4天,假如乙每天比原来多行10公里,则与甲的速度相等。那么甲行5天,乙行4天,就相当于甲行5+4=9(天),这样两人所走的路程的和就要多出10×4=40(公里)。即甲9天共行383+40=423(公里),所以甲每天走的就可以求出来了。甲每天走的知道了,乙每天走的也就可以知道了。

口述3:除上述两种方法外,本题还可以用列方程来解。设甲每天行x公里,那么乙每天行的就是(x-10)公里,已知甲行5天,乙行4天,两地相距383公里,则可列出方程:

5x+4×(x-10)=383

解方程,就可以求出甲每天行多少公里,甲每天行的求出来了,乙每天行的也就可以求出来了。

本题也可以设乙每天行x公里,则甲每天行的就是(x+10)公里。已知甲行5天,乙行4天,两地相距383公里,则可列出方程:

(x+10)×5+4x=383

解方程,就可以求出乙每天行多少公里,乙每天行的求出来了,甲每天行的也就可以求出来了。

……

实践证明,口述不同的解题思路和解题方法,不仅可以促使学生积极动脑,努力探求应用题的多种解法,培养和锻炼学生的逻辑思维能力和语言表达能力,而且可以帮助学生在较短的时间内把应用题的多种不同解法都挖掘出来,这对学生更好地认识和掌握应用题的各种解法,提高分析解答应用题的能力和效率等都有重要作用。

第三步,引导学生自己找出最简便的解法。

引导学生自己找出最简便的解法,就是在上面两步练习的基础上,在学生求得多种解题方法之后,让他们自己去分析比较,可以相互讨论,也允许相互争论,让学生在分析比较,相互讨论、相互争论的过程中,找出最简便的解题方法。这一过程,就是一个继续思维的过程,也是一个对应用题的各种解法的再认识的过程。它是一题多解训练的一个不可忽视的环节。学生通过前面两步的训练,求得应用题的多种解法之后,解题思维不能到此完结,对各种解题方法的认识也不是非常深刻。学生求得的几种解题方法是否完全正确,分析解题的过程是否都很恰当,哪些是一般的解法,哪些是自己的创新,哪种解法简便等等,这些都要引导学生自己去进一步思维,进一步去认识。否则是对是错,是优是劣,是简是繁,学生都不知道,这样就不能达到提高学生解题能力的目的。只有通过引导学生自己对上述求得的各种解题方法进行逐一比较,展开热烈的讨论或争论,才能真正把握应用题的最简便的解题方法,才能进一步提高解答应用题的能力和效率。

例1 幸福小学原计划买12个篮球,每个72元,从买篮球的钱中先拿出432元买足球,剩下的钱还够买几个篮球?

解法1 (72×12--432)÷72

=432÷72

=6(个)

答:剩下的钱还可以买6个篮球。

解法2 12-432÷72

=12-6

=6(4)

答:(同上)

……

本题上述多种解法,思维分析过程不同,解法和运算过程也不同。解法1是一般的思维和一般的算术解法;解法3,4……是列方程的解法。解法2也是算术解法,但解题思路新,解答方法、解题过程简便。当一个学生说出这个解题思路:“把拿出432元买足球的钱看作是少买了几个篮球的钱,再用计划买的12个篮球数减掉少买的篮球数所得的差,就是所求的答案。”列出:“12-432÷72”这个式子后,全班同学连连点头,纷纷称赞这位同学的解题思路独特又有新意,解题方法简便,解题过程简单。

实践证明,进行这种训练,让学生在比较、讨论、争论中,找出最简便的解法和独特的富有新意的解题思路,有利于加深学生对多种解题方法的认识,从而更熟练地把握应用题的多种分析解题方法。

一题多解训练,应当注意以下几点:

(1)目的要明确。上这种课,不是单纯地追求一题多解,而是要通过这种练习活动,达到锻炼学生的思维,拓宽学生的思路,增长学生的知识,培养和提高学生创造性学习能力这个根本目的。所以,教学内容的安排,教学活动的组织,教学方法的选择等等,都要有利于实现这个根本目的。这是上这种课的总要求。

(2)要注意把握上这种课的时间。这种课必须要在学生对有关的知识和技能熟练掌握的基础上进行。如果学生对有关的知识和技能没有熟练掌握,就谈不上灵活运用,就谈不上纵向、横向联系,也就不能进行一题多解。所以,上这种课,一般是在学生对某一部分知识或某几部分知识熟练掌握的时候,在综合练习时进行。学生对基础知识掌握得越深刻,越透彻;基本技能越娴熟,越灵活,就越能够进行一题多解,上这种课就越能收到好的效果。

(3)选题要得当,方法要灵活。选题得当是学生一题多解的前提条件。它既要能够一题多解,又要顾及班上差生、好生的具体情况,使差生想想也能找出几种解法,使好生也有用武之地;一题多解训练的具体方式方法是很多的,不能死搬硬套,人云亦云。要从实际出发,不能千题一律,堂堂如此。要根据班上学生学习的具体情况和实际教学需要,灵活选择教学方法。只有这样,才能调动全班学生的学习积极性,取得好的教学效果。

应用题怎样列方程

【知识方法归纳】

1.列方程解比较容易的两步应用题

(1)列方程解应用题的步骤

①弄清题意,找出未知数并用x表示;

②找出应用题中数量间的相等关系,列方程;

③解方程;

④检查,写出答案。

(2)列方程解应用题的关键

弄清题意后,找出应用题中数量间的相等关系,恰当地设未知数,列出方程。

(3)运用一般的数量关系列方程解应用题

①列方程解加、减法应用题。如:

甲乙两人年龄的和为29岁,已知甲比乙小3岁,甲、乙两人各多少岁?

数量间的等量关系:

甲的年龄 + 乙的年龄 = 甲乙二人的年龄和

解:设甲的年龄是x岁,则乙的年龄为:(x+3)岁。

x+(x+3)=29

x+x+3=29

2x=29-3

x=26 2

x=13……甲的年龄

13+3=16(岁)……乙的年龄

答:甲的年龄是13岁,乙的年龄是16岁。

②列方程解乘、除法应用题。如:

学校图书馆买来故事书240本,相当于科技书的3倍,买来科技书多少本?

科技书的本数 3 = 故事书的本数

解:设买来科技书x本

3x=240

x=80

答:买来科技书80本。

(4)用计算公式、性质、数位及计数单位等做数量间的等量关系,列方程解应用题

①一长方形的周长是240米,长是宽的1.4倍,求长方形的面积。

( 长 + 宽 ) 2=周长

解:设宽是x米,则长是(1.4x)米。

(1.4x+x) 2=240

2.4x=240 2

x=120 2.4

x=50……长方形的宽

50 1.4=70(米) ……长方形的长

70 50=3500(平方米)

答:长方形的面积是3500平方米。

②三角形ABC中,角A是角B的2倍,角A与角B的和比角C小18°。求三个角的度数。这是一个什么三角形?

角A + 角B + 角C = 180度

解:设角B是x度,

则角A是(2x)度,角C是[(2x+x)+18]度。

2x+x+[(2x+x)+18]=180

6x+18=180

6x=180-18

x=162 6

x=27……角B的度数

27 2=54(度)……角A的度数

54+27+18=99(度)……角C的度数

答:角A是54度,角B是27度,角C是99度。

因为:角B角A角C,90°角C180°,所以这个三角形是钝角三角形。

③一个两位数,十位数字与个位数字的和是6。若以原数减去7,十位数与个位数字相同,求原数。

十位上的数字 个位上的数字

解:设原数的个位数字为x。则原数十位上的数字为:6-x;若从原数中减去7,则个位上的数字变为:10+x-7、十位上的数字变为:6-x-1。

6-x-1=10+x-7

5-x=3+x

2x=2

x=1……原数的个位数字

6-1=5……原数的十位上的数

因此,原数是:51。

2.列方程解二、三步计算的应用题

广水电影院原有座位32排,平均每排坐38人;扩建后增加到40排,可比原来多坐584人。扩建后平均每排可以坐多少人?

解:设扩建后平均每排坐x人。

x 40-38 32=584

40x-1216=584

40x=584+1216

x=1800 40

x=45

答:扩建后平均每排可以坐45人。

3.列方程解含有两个未知数的应用题

某班学生合买一种纪念品,每人出1元,多4元6角;每人出9角,就差5角。求这件纪念品多少钱?这个班共有多少名学生?

解:设这个班共有x名学生

x-4.6=9 10 x+5 10

x-4.6=0.9x+0.5

0.1x=5.1

x=51……这个班学生人数

51-4.6=46.4(元) ……纪念品的单价

答:这件纪念品46.4元;这个班共有学生51名。

4.用方程解和用算术法解应用题的比较

用方程解应用题和用算术法解应用题有什么区别,它们之间的主要区别在于思路不同。

用方程解应用题,要设未知数x,并且把未知数x与已知数放在一起,分析应用题所叙述的数量关系,再根据数量关系和方程的意义,列出方程式。

用算术法解应用题,要把已知数集中起来,加以分析,找出已知数与未知数之间的联系,列出算式表示未知数。例如:

小华身高160厘米,比小兰高15厘米。小兰的身高是多少厘米?

用方程解:

解:设小兰的身高x厘米

160-x=15

x=160-15

x=145

或:x+15=160

x=160-15

x=145

用算术法解:

160-15=145

通过比较,同学们可以看出,这两种方法的主要区别是未知数参加不参加到列式之中。列算术式,是根据题中的条件,由已知推出未知,用已知数之间的关系来表示未知数。未知数是运算的结果,已知与未知数用等号隔开。列方程式,是根据题目叙述的顺序,未知数参加列式,未知数与已知数用运算符号相连接,从整体上反映数量关系的各个方面,所以,解题方式灵活多样,适用面广,用来解答那些反叙的问题更显得方便。

【典型范例剖析】

例1 甲乙两桶油,甲桶里有油45千克,乙桶里有油24千克,问从甲桶里倒多少千克的油到乙桶里,才能使甲桶里的油的重量是乙桶里的1.5倍?

分析:根据变动以后“甲桶里油的重量是乙桶的1.5倍”,可以列出等量关系式:

现在乙桶里油的重量 1.5 = 现在甲桶里油的重量

设从甲桶里倒x千克的油到乙桶里,那么,现在甲桶里的油是(45-x)千克,现在乙桶里的油是(24+x)千克。

解:设从甲桶里倒x千克油到乙桶里。

(24+x) 1.5=45-x

36+1.5x=45-x

36+1.5x+x=45

36+2.5x=45

x=(45-36) 2.5

x=3.6

答:从甲桶里倒3.6千克的油到乙桶里,才能使甲桶里油的重量是乙桶的5倍。

例2 一位三位数,个位上的数字是5,如果把个位上的数字移到百位上,原百位上的数字移到十位上,原十位上的数字移到个位上,那么所成的新数比原数小108,原数是多少?

分析:原三位数中只知道个位数字,百位和十位上的数字都不知道。如果设原三位数中的百位数字与十位数字拼成的二位数为x,则原三位数可表示为“10x+5”,那么新数就可以表示为“5 100+x”。

解:设原三位数中的百位数字与十位数字拼成的二位数为x,可得方程:

10x+5=5 100+x+108

10x-x=500+108-5

9x=603

x=67

10 67+5=675……原三位数

答:原三位数是675。

例3 某校附小举行了两次数学竞赛,第一次及格人数是不及格人数的3倍还多4人,第二次及格人数增加5人,正好是不及格人数的6倍,问参加竞赛的有多少人?

分析:本题所求的参赛人数包括了及格的和不及格的人数,而第二次的参赛人数与第一次参赛人数有直接关系的条件,总人数又不变。所以我们设第一次参赛的不及格人数为x人,那么第一次参赛及格的人数可以用“(3x+4)”人来表示,总数是(4x+4)人,第二次参赛及格的人数是(3x+4+5)人,不及格的人数是(x-5)人,根据“第二次及格人数是不及格人数的6倍”,这一等量关系,可列方程。

解:设第一次参赛不及格的人数为x,依据题意可得方程:

3x+4+5=(x-5) 6

3x+9=6x-30

3x=39

x=13

则 4x+4=13 4+4=56……参加竞赛的人数

答:参加竞赛的有56人。

【易错题解举例】

例1 吉阳村有粮食作物84公顷,比经济作物的4倍多2公顷,经济作物有多少公顷?

错误:设经济作物有x公顷

x=(84-2)÷4

x=82÷4

x=20.5

答:经济作物有20.5公顷。

分析:这题列出的式子是一个算术式,不是方程。错误在于没有弄清方程和算术式的区别。算术式是由已知数和运算符号组成的,用来表示未知数,如本题的“x=(84-2) ÷4”;而在方程里,未知数则是参加运算的,本题中的“x”则没有参加运算。

改正:设经济作物有x公顷

4x+2=84(或4x=84-2)

4x=82

x=20.5

答:经济作物有20.5公顷。

例2 食堂运来一批煤,原计划每天烧210千克,可以烧24天。改进炉灶后这批煤可烧28天。问:改进炉灶后平均每天比原计划节约多少千克?

错误:设每天比原计划节约x千克

28x=210 24

x=180

210-180=30(千克)

答:改进炉灶后平均每天比原计划节约30千克。

分析:题中所设未知数x与方程式中的x所表示的意义不同。题目中的方程式的“x”所表示的是“改进炉灶后平均每天烧煤数”,并不表示“节约”的数。本题可以采用“间接设未知数法”或“直接设未知数法”。

改正:(1)间接设未知数

解:设改进炉灶后每天烧煤x千克,则每天比原计划节约(210-x)千克。

28x=210 24

28x=5040

x=180

210-x=210-180=30

(2)直接设未知数

解:设改进炉灶后平均每天比原计划节约x千克。

(210-x) 28=210 24

210-x=180

x=210-180

x=30

答:改进炉灶后平均每天比原计划节约30千克。

例3 王兰有64张画片,雷江又送给她12张,这时王兰和雷江的画片数相等。雷江原有画片多少张?(用方程解)

错误:设雷江原有画片x张

x-12=64

x=76

分析:雷江送12张画片给王兰后,两人的画片数才相等。也就是说,雷江减少12张,王兰增加12张之后,他们的画片数才同样多。此解法把等量关系弄错了,误认为雷江的画片减少12张后与王兰原有的画片数相等。

改正:设雷江原有画片x张。

x-12=64+12

x=76+12

x=88

答:雷江原有画片88张。

【解题技巧指点】

1. 列方程解应用题时,往往列出来的是一个算术式,误以为是方程。如:广水市吉阳村有粮食作物84公顷,比经济作物的4倍多2公顷,经济作物有多少公顷?

解:设经济作物有x公顷

x=(84-2) 4

x=82 4

x=20.5

答:经济作物有20.5公顷。

本题中的“x=(84-2) 4”是一个算术式。出现上述错误,原因在于没有弄清方程式和算术式的区别。算术式是由已知数和运算符号组成的,用来表示未知数;而在方程里,未知数则是参加运算的。本题的方程应该列为:

4x+2=84或4x=84-2或84-4x=2

2.按照题意,恰当地设未知数。如:第一教工食堂运来一批煤,原计划每天烧煤210千克,可烧24天,改进炉灶后这批煤可烧28天。问:改进炉灶后平均每天比原计划节约多少千克?

设未知数时一般有两种方法:一种是直接设未知数为x,题目中问什么,就设什么为x;另一种是间接设未知数为x,再通过这个量与所求问题的关系,求出应用题中要求的未知量。

如果按直接设未知数为x的方法解答,那么本题中所列方程应该是:

解:设每天比原计划节约x千克煤

(210-x) 28=210 24

210-x=180

x=210-180

x=30

如果采用间接设未知数x的方法:

解:设改进炉灶后每天烧煤x千克,则每天比原计划节约(210-x)千克。

28x=210 24

x=180

210-180=30(千克)

答:每天比原计划节约30千克。

老了不死;参考资料:根据网络搜集