本文目录一览:
文本分类方法有哪些
文本分类问题: 给定文档p(可能含有标题t),将文档分类为n个类别中的一个或多个
文本分类应用: 常见的有垃圾邮件识别,情感分析
文本分类方向: 主要有二分类,多分类,多标签分类
文本分类方法: 传统机器学习方法(贝叶斯,svm等),深度学习方法(fastText,TextCNN等)
本文的思路: 本文主要介绍文本分类的处理过程,主要哪些方法。致力让读者明白在处理文本分类问题时应该从什么方向入手,重点关注什么问题,对于不同的场景应该采用什么方法。
文本分类的处理大致分为 文本预处理 、文本 特征提取 、 分类模型构建 等。和英文文本处理分类相比,中文文本的预处理是关键技术。
针对中文文本分类时,很关键的一个技术就是中文分词。特征粒度为词粒度远远好于字粒度,其大部分分类算法不考虑词序信息,基于字粒度的损失了过多的n-gram信息。下面简单总结一下中文分词技术:基于字符串匹配的分词方法、基于理解的分词方法和基于统计的分词方法 [1]。
1,基于字符串匹配的分词方法:
过程:这是 一种基于词典的中文分词 ,核心是首先建立统一的词典表,当需要对一个句子进行分词时,首先将句子拆分成多个部分,将每一个部分与字典一一对应,如果该词语在词典中,分词成功,否则继续拆分匹配直到成功。
核心: 字典,切分规则和匹配顺序是核心。
分析:优点是速度快,时间复杂度可以保持在O(n),实现简单,效果尚可;但对歧义和未登录词处理效果不佳。
2, 基于理解的分词方法:基于理解的分词方法是通过让计算机模拟人对句子的理解 ,达到识别词的效果。其基本思想就是在分词的同时进行句法、语义分析,利用句法信息和语义信息来处理歧义现象。它通常包括三个部分:分词子系统、句法语义子系统、总控部分。在总控部分的协调下,分词子系统可以获得有关词、句子等的句法和语义信息来对分词歧义进行判断,即它模拟了人对句子的理解过程。这种分词方法需要使用大量的语言知识和信息。由于汉语语言知识的笼统、复杂性,难以将各种语言信息组织成机器可直接读取的形式,因此目前基于理解的分词系统 还处在试验阶段 。
3,基于统计的分词方法:
过程:统计学认为分词是一个 概率最大化问题 ,即拆分句子,基于语料库,统计 相邻的字组成的词语出现的概率 ,相邻的词出现的次数多,就出现的概率大, 按照概率值进行分词 ,所以一个完整的语料库很重要。
主要的统计模型有: N元文法模型(N-gram),隐马尔可夫模型(Hidden Markov Model ,HMM),最大熵模型(ME),条件随机场模型(Conditional Random Fields,CRF)等。
1, 分词 : 中文任务分词必不可少,一般使用jieba分词,工业界的翘楚。
2, 去停用词:建立停用词字典 ,目前停用词字典有2000个左右,停用词主要包括一些副词、形容词及其一些连接词。通过维护一个停用词表,实际上是一个特征提取的过程,本质 上是特征选择的一部分。
3, 词性标注 : 在分词后判断词性(动词、名词、形容词、副词…),在使用jieba分词的时候设置参数就能获取。
文本分类的核心都是如何从文本中抽取出能够体现文本特点的关键特征,抓取特征到类别之间的映射。 所以特征工程很重要,可以由四部分组成:
1,基于词袋模型的特征表示:以词为单位(Unigram)构建的词袋可能就达到几万维,如果考虑二元词组(Bigram)、三元词组(Trigram)的话词袋大小可能会有几十万之多,因此基于词袋模型的特征表示通常是极其稀疏的。
(1)词袋特征的方法有三种:
(2)优缺点:
2,基于embedding的特征表示: 通过词向量计算文本的特征。(主要针对短文本)
4,基于任务本身抽取的特征:主要是针对具体任务而设计的,通过我们对数据的观察和感知,也许能够发现一些可能有用的特征。有时候,这些手工特征对最后的分类效果提升很大。举个例子,比如对于正负面评论分类任务,对于负面评论,包含负面词的数量就是一维很强的特征。
5,特征融合:对于特征维数较高、数据模式复杂的情况,建议用非线性模型(如比较流行的GDBT, XGBoost);对于特征维数较低、数据模式简单的情况,建议用简单的线性模型即可(如LR)。
6,主题特征:
LDA(文档的话题): 可以假设文档集有T个话题,一篇文档可能属于一个或多个话题,通过LDA模型可以计算出文档属于某个话题的概率,这样可以计算出一个DxT的矩阵。LDA特征在文档打标签等任务上表现很好。
LSI(文档的潜在语义): 通过分解文档-词频矩阵来计算文档的潜在语义,和LDA有一点相似,都是文档的潜在特征。
这部分不是重点,传统机器学习算法中能用来分类的模型都可以用,常见的有:NB模型,随机森林模型(RF),SVM分类模型,KNN分类模型,神经网络分类模型。
这里重点提一下贝叶斯模型,因为工业用这个模型用来识别垃圾邮件[2]。
1,fastText模型: fastText 是word2vec 作者 Mikolov 转战 Facebook 后16年7月刚发表的一篇论文: Bag of Tricks for Efficient Text Classification [3]。
模型结构:
改进:注意力(Attention)机制是自然语言处理领域一个常用的建模长时间记忆机制,能够很直观的给出每个词对结果的贡献,基本成了Seq2Seq模型的标配了。实际上文本分类从某种意义上也可以理解为一种特殊的Seq2Seq,所以考虑把Attention机制引入近来。
过程:
利用前向和后向RNN得到每个词的前向和后向上下文的表示:
词的表示变成词向量和前向后向上下文向量连接起来的形式:
模型显然并不是最重要的: 好的模型设计对拿到好结果的至关重要,也更是学术关注热点。但实际使用中,模型的工作量占的时间其实相对比较少。虽然再第二部分介绍了5种CNN/RNN及其变体的模型,实际中文本分类任务单纯用CNN已经足以取得很不错的结果了,我们的实验测试RCNN对准确率提升大约1%,并不是十分的显著。最佳实践是先用TextCNN模型把整体任务效果调试到最好,再尝试改进模型。
理解你的数据: 虽然应用深度学习有一个很大的优势是不再需要繁琐低效的人工特征工程,然而如果你只是把他当做一个黑盒,难免会经常怀疑人生。一定要理解你的数据,记住无论传统方法还是深度学习方法,数据 sense 始终非常重要。要重视 badcase 分析,明白你的数据是否适合,为什么对为什么错。
超参调节: 可以参考 深度学习网络调参技巧 - 知乎专栏
一定要用 dropout: 有两种情况可以不用:数据量特别小,或者你用了更好的正则方法,比如bn。实际中我们尝试了不同参数的dropout,最好的还是0.5,所以如果你的计算资源很有限,默认0.5是一个很好的选择。
未必一定要 softmax loss: 这取决与你的数据,如果你的任务是多个类别间非互斥,可以试试着训练多个二分类器,也就是把问题定义为multi lable 而非 multi class,我们调整后准确率还是增加了1%。
类目不均衡问题: 基本是一个在很多场景都验证过的结论:如果你的loss被一部分类别dominate,对总体而言大多是负向的。建议可以尝试类似 booststrap 方法调整 loss 中样本权重方式解决。
避免训练震荡: 默认一定要增加随机采样因素尽可能使得数据分布iid,默认shuffle机制能使得训练结果更稳定。如果训练模型仍然很震荡,可以考虑调整学习率或 mini_batch_size。
知乎的文本多标签分类比赛,给出第一第二名的介绍网址:
NLP大赛冠军总结:300万知乎多标签文本分类任务(附深度学习源码)
2017知乎看山杯 从入门到第二
利用神经网络进行文本分类算法综述(持续更新中)
传统的文本分类一般都是使用词袋模型/Tf-idf作为特征+机器学习分类器来进行分类的。随着深度学习的发展,越来越多的神经网络模型被用来进行文本分类。本文将对这些神经网络模型做一个简单的介绍。
本文介绍了一种词向量模型,虽然算不得文本分类模型,但由于其可以说是fasttext的基础。因此也简单提一下。
作者认为cbow和skipgram及大部分词向量模型都没有考虑到单词的多态性,而简单的将一个单词的多种形态视为独立的单词。例如like的不同形式有likes,liking,liked,likes,这些单词的意思其实是相同的,但cbow/skipgram模型却认为这些单词是各自独立的,没有考虑到其形态多样性。
因此作者提出了一个可以有效利用单词字符级别信息的n-gram词向量模型,该模型是以skipgram模式实现的。例如单词 where,其n-gram表示为wh, whe, her, ere, re, where。其中分别表示前后缀。在原始的skipgram模型中,输入仅仅只是where的onehot向量,而在此模型中输入则变成了wh, whe, her, ere, re, where的onehot编码的加和,有效的利用了字符级别的信息,因此效果更加好。
而在loss方面,文中采用了负采样+binary LogisticRegression的策略。即对每一个目标单词都预测为正负中的一种。
在本文中作者提供了一个基于神经网络的文本分类模型,这个模型是基于cbow的,与cbow非常类似。
和CBOW一样,fastText模型也只有三层:输入层、隐含层、输出层(Hierarchical Softmax),输入都是多个经向量表示的单词,输出都是一个特定的target,隐含层都是对多个词向量的叠加平均。不同的是,CBOW的输入是目标单词的上下文,fastText的输入是多个单词及其n-gram特征的embeding表示方式,这些特征用来表示单个文档;CBOW的输入单词被onehot编码过,fastText的输入特征是被embedding过;CBOW的输出是目标词汇,fastText的输出是文档对应的类标。输出层的实现同样使用了层次softmax,当然如果自己实现的话,对于类别数不是很多的任务,个人认为是可以直接使用softmax的。
最后,贴一个Keras的模型fasttext简化版。
基于词向量表示,本文提出利用卷积神经网络来进行文本分类。其算法如上图所示:
在本文中,作者尝试了多种不同的词向量模式:
在上一篇文章中CNN网络的输入一般是预训练好的词向量,而在本文中作者提出一种直接将embedding训练与分类任务结合在一起,且能有效提取/保留词序信息,也即有效训练出n-gram的模型方法,其实也可以理解为一种利用CNN来进行embedding的方法。
此外,另一个问题是输入序列长度变化问题(在上一篇文章textCNN中通过padding解决的?),在本文作者提出使用一个动态可变的pooling层来解决这个问题,使得卷积层输出的大小是相同的。关于可变pooling其实与图像识别中的 空间金字塔池化 (Spatial Pyramid Pooling) 是类似的。
这篇文章有点将fastText与TextCNN结合在一起的感觉,将n-gram embedding与分类任务结合在了一起进行训练,通过CNN来进行Embedding。
Text Categorization via Region Embedding》
在本篇文章中作者提出了一个tv-embedding(即two-view embedding),它也属于region embedding(也可以理解为ngram embedding)。这种方法与上面的bow-CNN表示相似,使用bow(bag of words)的方式来表示一个区域的词句,然后通过某个区域(region,左右邻域的单词或词句)来预测其前后的区域(单词或词句),即输入区域是view1,target区域是view2。tv-embedding是单独训练的,在使用的时候与CNN中的embedding组合在一起(形成多个channel?)。作者认为,word2vec方法预训练得到的embedding向量是普适性的,而通过特定任务的数据集的训练得到tv-embedding具有任务相关的一些信息,更有利于提升我们的模型效果。
吐槽一下,这篇文章没太看懂,也可能是英语太差,作者文章中没有那种一眼就能让人理解的网络图,像textCNN的图就非常一目了然,看图就知道是怎么做的了。
本文提出了一个使用监督学习加半监督预训练的基于LSTM的文本分类模型。文章作者与上面相同,所以用到的很多技术可以说与上面也是同出一辙。因此简单说下本文的一些思路。
作者认为已有的直接使用LSTM作为文本分类模型并直接将LSTM的最后一个输出作为后续全连接分类器的方法面临两个问题:(1)这种方式一般都是与word embedding整合在一起(即输入onehot经过一个embedding层再进入LSTM),但是embedding训练不稳定,不好训练;(2)直接使用LSTM最后一个输出来表示整个文档不准确,一般来说LSTM输入中后面的单词会在最后输出中占有较重的权重,但是这对于文章表示来说并不总是对的。因此作者对这两点进行了改进:
本文其实可以看作是作者将自己前面的tv-embedding半监督训练与RCNN的一个融合吧,大有一种一顿操作猛如虎,一看人头0-5的感觉(因为作者的实验结果跟一般的CNN相比其实也抢不了多少)。
本文的作者也是前面两篇使用CNN来进行文本分类处理的文章的作者。因此在本文中,结合了前面两篇文章提出的一些方法,并使用了一个深层的卷积神经网络。具体的细节包括:
更多详细的关于DPCNN的细节可以查看 从DPCNN出发,撩一下深层word-level文本分类模型 。
本文提出了一种基于CNN+Attention的文本分类模型。作者认为已有的基于CNN的文本分类模型大都使用的是固定大小的卷积核,因此其学习到的表示也是固定的n-gram表示,这个n与CNN filter大小相关。但是在进行句子的语义表示时,不同句子发挥重要作用的ngram词语常常是不同的,也即是变化的。因此,模型能根据句子来自适应的选择每个句子最佳的n-gram对于提升模型的语义表示能力是非常关键的。本文便是由此思路提出了一种自适应的来选择不同n-gram表示的模型。
本文模型在主题结构上参照了CV中的DenseNet,借由DenseNet中的稠密连接来提取到丰富的n-gram特征表示。举例来说,在layer3的特征不仅能学习到f(x1, x2, x3),还能学习到f(x1(x2,x3))这种更多层次,更加丰富的特征。网络的结构主要包括三部分:DenseCNN主网络,Attention module和最后的全连接层分类网络。下面对这三部分进行简单的说明:
本文通过Dense connection + Attention来自动获取对于文本语义最重要的n-gram特征,结果很好。但是缺点是,这个网络比较适合较短的文本,文中对输入文本进行了padding补齐,对于不同数据集最大长度分别为50,100等,但这对于较长的文本明显是不足的。因此对于较长的文本或许HAN这种借用RNN来不限制输入长短的网络会更好。
本文提出了一种结合循环神经网络(RNN)和卷积神经网络来进行文本分类的方法,其结构如上图所示,该网络可以分为三部分:
虽然说是RNN与CNN的结合,但是其实只用到了CNN中的pooling,多少有一点噱头的意思。文中还提到了RCNN为什么比CNN效果好的原因,即为什么RCNN能比CNN更好的捕捉到上下文信息:CNN使用了固定大小window(也即kernel size)来提取上下文信息,其实就是一个n-gram。因此CNN的表现很大程度上受window大小的影响,太小了会丢失一些长距离信息,太大了又会导致稀疏性问题,而且会增加计算量。
在众多自然语言处理任务中,一个非常突出的问题就是训练数据不足,且标注难度大。因此文本提出了一种多任务共享的RNN模型框架,其使用多个不同任务数据集来训练同一个模型共享参数,已达到扩充数据集的作用。
文中作者提出了三个模型,如上图所示:
三个模型的训练方式相同:
本文提出了一个层次LSTM+Attention模型。作者认为,虽然一篇文章有多个句子组成但真正其关键作用的可能是其中的某几个,因此对各个句子施加了注意力机制,以使得对文章语义贡献较多的句子占有更多的权重。同样的,组成一个句子的单词有多个,但是发挥重要作用的可能就那么几个,因此使用注意力机制以使得重要单词发挥更大的作用,这些便是本文的核心思想。整个网络可分为三层,两个LSTM层分别用来进行word encode和sentence encode,最顶上为一个全连接分类层。若加上两层注意力层,则可认为网络为5层。下面简单聊聊这五层网络的结构:
总体来说,本文看起来还是比较有意思的,符合人阅读文章的习惯,我们写文章的时候也是有中心词和中心句的。但是由于这个层级结构是否会导致训练慢或者不好训练还不得而知。最后,文中还提出对文章按长短先进行排序,长度相似的进入一个batch,这将训练速度加快了3倍。
本文提出了一个基于图神经网络的文本分类方法。该方法的主要思想是将所有文章及其包含的词汇都放到一个图网络里面去,图网络中的节点分为两种类型:单词节点和文章节点。其中连接单词节点和文章节点的边的权重使用TF-IDF来表示,而单词与单词之间边的权重则是使用点互信息(PMI)来表示。点互信息与传统语言模型中的条件概率计算方式非常相似。只不过PMI采用的是滑窗方式而条件概率是直接在所有语料中进行统计,可以认为是将所有语料当做一个大窗口,这时就又与PMI相同了。
A表示图网络的邻接矩阵,表示如下:
GCN同样也是可以含有多层隐藏层的,其各个层的计算方式如下:
其中A'为归一化对称邻接矩阵, W0 ∈ R^(m×k) 为权重矩阵,ρ是激活函数,例如 ReLU ρ(x) = max(0,x) 如前所述,可以通过叠加多个GCN层来合并更高阶的邻域信息:
其中j表示层数。
损失函数定义为所有已标记文档的交叉熵误差:
文中提到Text GCN运行良好的原因有两个方面:
但是其也有一些缺:
总的来说,文章的idea还是挺有意思的,效果也还不错。初识GCN可能还是有一点难以理解,可以参考如下资料进行进一步学习:
基于图卷积网络的文本分类算法
如何理解 Graph Convolutional Network(GCN)?
NLP之文本分类
作为NLP领域最经典的使用场景之一,文本分类积累了许多的实现方法。这里我们根据是否使用深度学习方法将文本分类主要分为一下两个大类:
随着统计学习方法的发展,特别是在90年代后互联网在线文本数量增长和机器学习学科的兴起,逐渐形成了一套解决大规模文本分类问题的经典玩法,这个阶段的主要套路是人工特征工程+浅层分类模型。整个文本分类问题就拆分成了 特征工程 和 分类器 两部分。
这里的特征工程也就是将文本表示为计算机可以识别的、能够代表该文档特征的特征矩阵的过程。在基于传统机器学习的文本分类中,我们通常将特征工程分为 文本预处理、特征提取、文本表示 等三个部分。
文本预处理过程是提取文本中的关键词来表示文本的过程 。中文文本预处理主要包括 文本分词 和 去停用词 两个阶段。
文本分词 ,是因为很多研究表明特征粒度为词粒度远好于字粒度(其实很好理解,因为大部分分类算法不考虑词序信息,基于字粒度显然损失了过多“n-gram”信息)。具体到中文分词,不同于英文有天然的空格间隔,需要设计复杂的分词算法。传统分词算法主要有 基于字符串匹配的正向/逆向/双向最大匹配 ; 基于理解的句法和语义分析消歧 ; 基于统计的互信息/CRF方法 。近年来随着深度学习的应用, WordEmbedding + Bi-LSTM+CRF方法 逐渐成为主流,本文重点在文本分类,就不展开了。
而 停止词 是 文本中一些高频的代词、连词、介词等对文本分类无意义的词 ,通常维护一个停用词表,特征提取过程中删除停用表中出现的词,本质上属于特征选择的一部分。
特征提取包括 特征选择 和 特征权重计算 两部分。
特征选择的基本思路 是 根据某个评价指标独立的对原始特征项(词项)进行评分排序,从中选择得分最高的一些特征项,过滤掉其余的特征项 。常用的评价有:文档频率、互信息、信息增益、χ²统计量等。
特征权重计算 主要是经典的TF-IDF方法及其扩展方法。 TF-IDF的主要思想 是 一个词的重要度与在类别内的词频成正比,与所有类别出现的次数成反比 。
文本表示的目的是把文本预处理后的转换成计算机可理解的方式,是决定文本分类质量最重要的部分。传统做法常用 词袋模型 (BOW, Bag Of Words)或 向量空间模型 (Vector Space Model),最大的 不足 是忽略文本上下文关系,每个词之间彼此独立,并且无法表征语义信息。
大部分机器学习方法都在文本分类领域有所应用,比如朴素贝叶斯分类算法(Naïve Bayes)、KNN、SVM、最大熵和神经网络等等。
FastText 是Facebook AI Research在16年开源的一种文本分类器。 其 特点 就是 fast 。相对于其它文本分类模型,如 SVM , Logistic Regression 等模型,fastText能够在保持分类效果的同时,大大缩短了训练时间。
FastText方法包含三部分, 模型架构 , 层次SoftMax 和 N-gram特征 。
FastText模型架构和 Word2Vec 中的 CBOW 模型很类似,因为它们的作者都是Facebook的科学家Tomas Mikolov。不同之处在于,FastText 预测标签 ,而CBOW 模型 预测中间词 。
TextCNN 是利用卷积神经网络对文本进行分类的算法,它是由 Yoon Kim 在2014年在 “ Convolutional Neural Networks for Sentence Classification ” 一文中提出的。详细的原理图如下。
特征 :这里的特征就是词向量,有 静态(static) 和 非静态(non-static) 方式。static方式采用比如word2vec预训练的词向量,训练过程不更新词向量,实质上属于迁移学习了,特别是数据量比较小的情况下,采用静态的词向量往往效果不错。non-static则是在训练过程中更新词向量。推荐的方式是 non-static 中的 fine-tunning方式,它是以预训练(pre-train)的word2vec向量初始化词向量,训练过程中调整词向量,能加速收敛,当然如果有充足的训练数据和资源,直接随机初始化词向量效果也是可以的。
通道(Channels) :图像中可以利用 (R, G, B) 作为不同channel,而文本的输入的channel通常是不同方式的embedding方式(比如 word2vec或Glove),实践中也有利用静态词向量和fine-tunning词向量作为不同channel的做法。
一维卷积(conv-1d) :图像是二维数据,经过词向量表达的文本为一维数据,因此在TextCNN卷积用的是一维卷积。一维卷积带来的问题是需要设计通过不同 filter_size 的 filter 获取不同宽度的视野。
Pooling层: 利用CNN解决文本分类问题的文章还是很多的,比如这篇 A Convolutional Neural Network for Modelling Sentences 最有意思的输入是在 pooling 改成 (dynamic) k-max pooling,pooling阶段保留 k 个最大的信息,保留了全局的序列信息。
参考文献
技术 | 文本聚类与分类
按照处理的对象和处理的方法不同,可将常见文本分类/聚类任务分为以下几种:
① 文档聚类: 把一组未知类别的文档划分为若干类别,例如将介绍奥运会的新闻都归到某一类;
② 文档分类: 给定一个文档,将其划分到预定义好的某一个类别中,例如将所有介绍奥运会的新闻都标记为“体育”;
③ 词汇聚类: 把一组未知类别的词汇划分为若干类别,例如将各种运动的项目名称(词汇)都归为一类;
④ 词汇分类: 给定一个词汇,将其划分到预定义好的某一个类别中,例如将篮球、足球等都比较为球类,将打猎、射箭等都标记为射击。
要实现上述目的,通常有以下几个核心问题要解决:
1. 特征选择
1.1 用什么作为特征项
用于表示文本的基本单位通常称为文本的特征或特征项。特征项必须满足:能够标识文本内容、能够将目标文本与其他文本相区分、个数不能太多、特征项分离要比较容易实现。在中文文本中可以采用字、词或短语作为表示文本的特征项。
相比较而言,词比字具有更强的表达能力,而词和短语相比,词的切分难度比短语的切分难度小得多。因此,目前大多数中文文本分类系统都采用词作为特征项,称作特征词。这些特征词作为文档的中间表示形式,用来实现文档与文档、文档与用户目标之间的相似度计算 。
1.2 选取哪些作为特征项
如果把所有的词都作为特征项,那么特征向量的维数将过于巨大,从而导致计算量太大,在这样的情况下,要完成文本分类几乎是不可能的。特征提取的主要功能是在不损伤文本核心信息的情况下尽量减少要处理的单词数,以此来降低向量空间维数,从而简化计算,提高文本处理的速度和效率。
特征选取的方式有2种:用映射或变换的方法把原始特征变换为较少的新特征(将原始特征用新特征表示);从原始特征中挑选出一些最具代表性的特征(只保留部分原始特征,不产生新特征),即根据某个特征评估函数计算各个特征的评分值,然后按评分值对这些特征进行排序,选取若干个评分值最高的作为特征词,常见的特征评估函数包括TF-IDF、信息增益、互信息等。
2. 文本表示
2.1 如何表示文档
为了让计算机能够“计算”文本,就需要我们将文本数据转换成计算机可以处理的结构化数据。常见的文本表示模型有布尔模型、向量空间模型、统计主题模型等。其中,向量空间模型概念简单,把对文本内容的处理简化为向量空间中的向量运算,并且它以空间上的相似度表达语义的相似度,直观易懂,目前应用最广。
2.2 如何确立权重
一篇文档有很多词,有些词表达的语义很重要,有些相对次要,那么如何确定哪些重要?哪些次要呢?因此,需要进一步对每个词的重要性进行度量。常见的确立词汇权重的算法有TF-IDF、词频法等。
3. 相似性计算
要实现文本的分类和聚类,需要设计一种算法计算出文档与文档、词汇与词汇之间的相似性。
3.1 文档相似性
设定我们要比较X和Y间的差异,它们都包含了N个维的特征,即X=(x1, x2, x3, … xn),Y=(y1, y2, y3, … yn)。下面来看看主要可以用哪些方法来衡量两者的差异,主要分为距离度量和相似度度量。
a. 距离度量
距离度量(Distance)用于衡量个体在空间上存在的距离,距离越远说明个体间的差异越大。常见的距离有欧几里得距离(Euclidean Distance)、明可夫斯基距离(Minkowski Distance)、曼哈顿距离(Manhattan Distance)、切比雪夫距离(Chebyshev Distance)、马哈拉诺比斯距离(Mahalanobis Distance)。
b. 相似性度量
相似度度量(Similarity),即计算个体间的相似程度,与距离度量相反,相似度度量的值越小,说明个体间相似度越小,差异越大。常见的相似性度量有向量空间余弦相似度(Cosine Similarity)、皮尔森相关系数(Pearson Correlation Coefficient)、Jaccard相似系数(Jaccard Coefficient)、调整余弦相似度(Adjusted Cosine Similarity)。
欧氏距离是最常见的距离度量,而余弦相似度则是最常见的相似度度量,很多的距离度量和相似度度量都是基于这两者的变形和衍生,所以下面重点比较下两者在衡量个体差异时实现方式和应用环境上的区别。下面借助三维坐标系来看下欧氏距离和余弦相似度的区别:
从图上可以看出距离度量衡量的是空间各点间的绝对距离,跟各个点所在的位置坐标(即个体特征维度的数值)直接相关;而余弦相似度衡量的是空间向量的夹角,更加的是体现在方向上的差异,而不是位置。如果保持A点的位置不变,B点朝原方向远离坐标轴原点,那么这个时候余弦相似度cosθ是保持不变的,因为夹角不变,而A、B两点的距离显然在发生改变,这就是欧氏距离和余弦相似度的不同之处。
根据欧氏距离和余弦相似度各自的计算方式和衡量特征,分别适用于不同的数据分析模型:欧氏距离能够体现个体数值特征的绝对差异,所以更多的用于需要从维度的数值大小中体现差异的分析,如使用用户行为指标分析用户价值的相似度或差异;而余弦相似度更多的是从方向上区分差异,而对绝对的数值不敏感,更多的用于使用用户对内容评分来区分用户兴趣的相似度和差异,同时修正了用户间可能存在的度量标准不统一的问题(因为余弦相似度对绝对数值不敏感)。
3.2 词汇相似性
目前我接触的常见词汇相似性的方法有:
a. 传统图情领域:基于共现频次这一基本统计量衍生出来的,如association strength、inclusion index、Jaccard’s coefficient、Salton’s cosine(Ochiia系数)等;
b. 计算机领域:一是基于语义词典的方法,即依据词典分类体系挖掘所包含的词义知识,常用的词典包括Wordnet、Hownet等;二是基于语料库的方法,这里的语料库较为多元,例如百科预料、唐诗宋词预料等;;三是进行词向量化,如Word2vec。
4. 文本分类/聚类算法
有了文本表示方法,又有了计算相似性的公式,下一步就可以在此基础上讨论文本分类/聚类的算法了。
4.1 文本分类
医生对病人进行诊断就是一个典型的分类过程,任何一个医生都无法直接看到病人的病情,只能观察病人表现出的症状和各种化验检测数据来推断病情,这时医生就好比一个分类器,而这个医生诊断的准确率,与他当初受到的教育方式(构造方法)、病人的症状是否突出(待分类数据的特性)以及医生的经验多少(训练样本数量)都有密切关系。
分类器是对样本进行分类的方法的统称,包含决策树、逻辑回归、朴素贝叶斯、神经网络等算法。举个例子:假如你想区分小明是好学生还是坏学生,那么区分“好学生”和“坏学生”就是一个分类任务。
4.1.1 K最邻近
“别和其他坏学生在一起,否则你也会和他们一样。” —— 家长
主要思想是通过离待预测样本最近的K个样本的类别来判断当前样本的类别。从K最近邻算法的角度来看,就是让目标样本与其他正样本距离更近、与其他负样本距离更远,从而使得其近邻中的正样本比例更高,更大概率被判断成正样本。
4.1.2 朴素贝叶斯
“根据以往抓获的情况来看,十个坏学生有九个爱打架。” —— 教导主任
“十个坏学生有九个爱打架”就意味着“坏学生”打架的概率P(打架|坏学生)=0.9,假设根据训导处历史记录坏学生占学生总数P(坏学生)=0.1、打架发生的概率是P(打架)=0.09,那么这时如果发生打架事件,就可以通过贝叶斯公式判断出当事学生是“坏学生”的概率P(坏学生|打架)=P(打架|坏学生)×P(坏学生)÷P(打架)=1.0,即该学生100%是“坏学生”。
4.1.3 决策树
“先看抽不抽烟,再看染不染头发,最后看讲不讲脏话。” ——社区大妈
假设“抽烟”、“染发”和“讲脏话”是社区大妈认为的区分“好坏”学生的三项关键特征,那么这样一个有先后次序的判断逻辑就构成一个决策树模型。在决策树中,最能区分类别的特征将作为最先判断的条件,然后依次向下判断各个次优特征。决策树的核心就在于如何选取每个节点的最优判断条件,也即特征选择的过程。
而在每一个判断节点,决策树都会遵循一套IF-THEN的规则:
IF “抽烟” THEN - “坏学生” ELSE IF “染发” THEN - “坏学生” ELSE IF “讲脏话” THEN - “坏学生” ELSE - “好学生”
4.1.4 逻辑回归
“上课讲话扣1分,不交作业扣2分,比赛得奖加5分。” ——纪律委员
我们称逻辑回归为一种线性分类器,其特征就在于自变量x和因变量y之间存在类似y=ax+b的一阶的、线性的关系。假设“上课讲话”、“不交作业”和“比赛得奖”的次数分别表示为x1、x2、和x3,且每个学生的基础分为0,那么最终得分y=-1 x1-2 x2+5*x3+0。其中-1、-2和5分别就对应于每种行为在“表现好”这一类别下的权重。
对于最终得分y,逻辑回归还通过Sigmoid函数将其变换到0-1之间,其含义可以认为是当前样本属于正样本的概率,即得分y越高,属于“表现好”的概率就越大。也就是说,假如纪律委员记录了某位同学分别“上课讲话”、“不交作业”和“比赛得奖”各一次,那么最终得分y=-2-1+5=2,而对2进行Sigmoid变换后约等于0.88,即可知该同学有88%的概率为“好学生”。
4.1.5 支持向量机
“我想个办法把表现差的学生都调到最后一排。” ——班主任
支持向量机致力于在正负样本的边界上找到一条分割界线(超平面),使得它能完全区分两类样本的同时,保证划分出的间隔尽量的大。如果一条分割界线无法完全区分(线性不可分),要么加上松弛变量进行适当的容忍,要么通过核函数对样本进行空间上的映射后再进行划分。对于班主任来讲,调换学生们的座位就相当于使用了核函数,让原本散落在教室里的“好”、“坏”学生从线性不可分变得线性可分了。
4.2 文本聚类
4.2.1 基于分层的聚类
hierarchical methods: 对数据集进行逐层分解,直到满足某种条件为止。可分为“自底向上”和“自顶向下”两种。例如“自底向上”指初始时每个数据点组成一个单独的组,在接下来的迭代中,按一定的距离度量将相互邻近的组合并成一个组,直至所有的记录组成一个分组或者满足某个条件为止。代表算法有:BIRCH,CURE,CHAMELEON等。自底向上的凝聚层次聚类如下图所示。
4.2.2 基于划分的聚类
partitioning methods: 给定包含N个点的数据集,划分法将构造K个分组,每个分组代表一个聚类,这里每个分组至少包含一个数据点,每个数据点属于且仅属于一个分组。对于给定的K值,算法先给出一个初始的分组方法,然后通过反复迭代的方法改变分组,使得每一次改进之后的分组方案较前一次好,这里好的标准在于同一组中的点越近越好,不同组中的点越远越好。代表算法有:K-means,K-medoids,CLARANS。K-means聚类过程图解如下:
4.2.3 基于密度的聚类
density-based methods: 基于密度的方法的特点是不依赖于距离,而是依赖于密度,从而克服基于距离的算法只能发现“球形”聚簇的缺点。其核心思想在于只要一个区域中点的密度大于某个阈值,就把它加到与之相近的聚类中去。代表算法有:DBSCAN,OPTICS,DENCLUE,WaveCluster。DBSCAN的聚簇生成过程的简单理解如下图。
4.2.3 基于网格的聚类
gird-based methods: 这种方法通常将数据空间划分成有限个单元的网格结构,所有的处理都是以单个的单元为对象。这样做起来处理速度很快,因为这与数据点的个数无关,而只与单元个数有关。代表算法有:STING,CLIQUE,WaveCluster。基于Clique的聚类过程可直观如下图进行理解。
4.2.4 基于模型的聚类
model-based methods: 基于模型的方法给每一个聚类假定一个模型,然后去寻找能很好的拟合模型的数据集。模型可能是数据点在空间中的密度分布函数或者其它。这样的方法通常包含的潜在假设是:数据集是由一系列的潜在概率分布生成的。通常有两种尝试思路:统计学方法和神经网络方法。其中,统计学方法有COBWEB算法、GMM(Gaussian Mixture Model),神经网络算法有SOM(Self Organized Maps)算法。下图是GMM过程的一个简单直观地理解。
4.2.5 基于图论的聚类
图论聚类方法解决的第一步是建立与问题相适应的图,图的节点对应于被分析数据的最小单元,图的边(或弧)对应于最小处理单元数据之间的相似性度量。因此,每一个最小处理单元数据之间都会有一个度量表达,这就确保了数据的局部特性比较易于处理。图论聚类法是以样本数据的局域连接特征作为聚类的主要信息源,因而其主要优点是易于处理局部数据的特性。典型算法有谱聚类。
聚类问题的研究不仅仅局限于上述的硬聚类,即每一个数据只能被归为一类,模糊聚类也是聚类分析中研究较为广泛的一个分支。模糊聚类通过隶属函数来确定每个数据隶属于各个簇的程度,而不是将一个数据对象硬性地归类到某一簇中。目前已有很多关于模糊聚类的算法被提出,如著名的FCM算法等。