本文目录一览:
正态分布函数公式是什么?
正态分布函数公式是P(x)=(2π)^(-1/2)*σ^(-1)*exp{[-(x-μ)^2]/(2σ^2)}。 其中 F(y)为Y的分布函数,F(x)为X的分布函数。其中μ为均数,σ为标准差。μ决定了正态分布的位置,与μ越近,被取到的概率就越大,反之越小。
σ描述的是正态分布的离散程度,σ越大,数据分布越分散曲线越扁平。σ越小,数据分布越集中曲线越陡峭。若随机变量X服从一个位置参数为μ、尺度参数为σσ的概率分布,且其概率密度函数为f(x)=12π−−√σe−(x−μ)22σ2。
正态分布函数的特征
1、集中性,正态曲线的高峰位于正中央,即均数所在的位置。
2、对称性,正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。
3、均匀变答动性,正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。
4、正态分布有两个参数,即均数μ和标准差σ,可记作N(μ,σ)。
5、u变换,为了便于描述和应用,常将正态变量作数据转换。
正态分布的分布函数是什么?
一般正态分布的分布函数F(x):
F(x)=P(X⩽x)=1√2πσ∫x−∞e−(t−μ)22σ2dt。
标准正态分布的分布函数Φ(x):
Φ(x)=P(X⩽x)=1√2π∫x−∞e−t22dt。
正态分布具体介绍:
正态分布概率计算公式:F(x)=Φ[(x-μ)/σ],正态分布也称“常态分布”,又名高斯分布,正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。
若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。
其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。
当μ=0,σ=1时的正态分布是标准正态分布。
正态分布的公式是什么
正态分布
若连续型随机变量 X的概率密度为
其中μ,σ(σ0)为常数,则称 X服从参数为μ,σ的正态分布或高斯(Gauss)分布,
1、曲线关于x=μ对称.这表明对于任意h0
2、当x=μ时取到最大值
x离μ越远,f(x)的值越小.这表明对于同样长度的区间,当区间离μ越远,X 落在这个区间上的概率越小.
在 x=μ±a处曲线有拐点.曲线以 Ox 轴为渐近线.
标准正态分布函数是什么?
标准正态分布函数公式如下图:
标准正态分布函数的性质:
1、密度函数关于平均值对称。
2、函数曲线下68.268949%的面积在平均数左右的一个标准差范围内。
3、函数曲线的反曲点为离平均数一个标准差距离的位置。
4、平均值与它的众数以及中位数同一数值。5、95.449974%的面积在平均数左右两个标准差的范围内。
标准正态分布是以0为均数,以1为标准差的正态分布,记为N(0,1)。标准正态分布在数学、物理及工程等领域都非常重要,在统计学的许多方面也有着重大的影响力。
正态分布也称为高斯分布。客观世界中很多变量都服从或近似服从正态分布,且正态分布具有很好的数学性质,所以正态分布也是人们研究最多的分布之一。
正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ=0,σ=1时的正态分布是标准正态分布。
标准正态分布函数公式是什么意思?
标准正态分布(英语:standard normal distribution, 德语Standardnormalverteilung),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。
期望值μ=0,即曲线图象对称轴为Y轴,标准差σ=1条件下的正态分布,记为N(0,1)。
定义:
标准正态分布又称为u分布,是以0为均数、以1为标准差的正态分布,记为N(0,1)。
标准正态分布曲线下面积分布规律是:在-1.96~+1.96范围内曲线下的面积等于0.9500,在-2.58~+2.58范围内曲线下面积为0.9900。
统计学家还制定了一张统计用表(自由度为∞时),借助该表就可以估计出某些特殊u1和u2值范围内的曲线下面积。
正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线。
我们通常所说的标准正态分布是位置参数均数为0, 尺度参数:标准差为1的正态分布(见下图中绿色曲线)。
拓展资料:
标准偏差:
深蓝色区域是距平均值小于一个标准差之内的数值范围。在正态分布中,此范围所占比率为全部数值之68%,根据正态分布,两个标准差之内的比率合起来为95%;三个标准差之内的比率合起来为99%。
在实际应用上,常考虑一组数据具有近似于正态分布的概率分布。
若其假设正确,则约68.3%数值分布在距离平均值有1个标准差之内的范围,约95.4%数值分布在距离平均值有2个标准差之内的范围,以及约99.7%数值分布在距离平均值有3个标准差之内的范围。
称为“68-95-99.7法则”或“经验法则”。
参考资料:标准正态分布-百度百科